A Reliable Multi-Sensor Navigation System for an Unmanned Aerial Vehicle Realized through Integration of SINS with GPS, CNS and Doppler Radar

2013 ◽  
Vol 392 ◽  
pp. 312-318 ◽  
Author(s):  
Muhammad Ushaq ◽  
Fang Jian Cheng

Contemporary importance of the unmanned aerial vehicle (UAV) both for military and civilian applications has prompted vigorous research related with guidance, navigation and control of these vehicles. The potential civilian uses for small low-cost UAVs are various like reconnaissance, surveillance, rescue and search, remote sensing, traffic monitoring, destruction appraisal of natural disasters, etc. One of the most crucial parts of UAVs missions is accurate navigation of the vehicle, i.e. the real time determination of its position, velocity and attitude. Generally highly accurate Strap down Inertial Navigation Systems (SINS) are too heavy to be flown on UAVs. Moreover highly accurate SINS are also highly expensive. Therefore the low-cost and low weight MEMS based SINS with a compromised precision are the viable option for navigation of UAVs. The errors in position, velocity, and attitude solutions provided by the MEMS based SINS grow unboundedly with the passage of time. To contain these growing errors, integrated navigation is the resolution. Complementary characteristics SINS and external non-inertial navigation aids like Global Positioning System (GPS), Celestial Navigation System (CNS) and Doppler radar make the integrated navigation system an appealing and cost effective solution. The non-inertial sensors providing navigation fixes must have low weight and volume to be suitable for UAV application. In this research work GPS, CNS and Doppler radar are used as external navigation aids for SINS. The navigation solutions of all contributing systems are fused using Federated Kalman Filter (FKF). Three local filters are employed for SINS/GPS, SINS/CNS and SINS/Doppler integration and subsequently information from all three local filters is fused to acquire a global solution. Moreover adaptive and fault tolerant filtering scheme has also been implemented in each local filter to isolate or accommodate any undesirable error or noise. Simulation for the presented architecture has validated the effectiveness of the scheme, by showing a substantial precision improvement in the solutions of position, velocity and attitude.

10.14311/754 ◽  
2005 ◽  
Vol 45 (4) ◽  
Author(s):  
P. Kaňovský ◽  
L. Smrcek ◽  
C. Goodchild

The study described in this paper deals with the issue of a design tool for the autopilot of an Unmanned Aerial Vehicle (UAV) and the selection of the airdata and inertial system sensors. This project was processed in cooperation with VTUL a PVO o.z. [1]. The feature that distinguishes the autopilot requirements of a UAV (Figs. 1, 7, 8) from the flight systems of conventional manned aircraft is the paradox of controlling a high bandwidth dynamical system using sensors that are in harmony with the low cost low weight objectives that UAV designs are often expected to achieve. The principal function of the autopilot is flight stability, which establishes the UAV as a stable airborne platform that can operate at a precisely defined height. The main sensor for providing this height information is a barometric altimeter. The solution to the UAV autopilot design was realised with simulations using the facilities of Matlab® and in particular Simulink®[2]. 


2017 ◽  
Vol 54 (2) ◽  
pp. 022801
Author(s):  
李涛 Li Tao ◽  
梁建琦 Liang Jianqi ◽  
闫浩 Yan Hao ◽  
朱志飞 Zhu Zhifei ◽  
唐军 Tang Jun

Author(s):  
A. M. Kovalenko ◽  
A. A. Shejnikov

In article approaches to creation of the complex inertial and optical navigation system of the short-range tactical unmanned aerial vehicle are considered. Algorithms constant and periodic (in intermediate points of a route) are offered correction of the platformless onboard inertial navigation system. At integration of information on parameters of the movement of the unmanned aerial vehicle (received from the considered systems) the invariant loosely coupled scheme of data processing on the basis of the expanded filter of Kallman was used that allowed to lower significantly a systematic component of an error of the platformless inertial navigation system. Advantages of the complex inertial and optical navigation system when ensuring flight of the unmanned aerial vehicle in an area of coverage of means of radio-electronic fight of the opponent are shown. The results of modeling confirming a possibility of ensuring precision characteristics of the inertial and optical navigation system in the absence of signals of satellite radio navigational systems are presented.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1426 ◽  
Author(s):  
Mengde Zhang ◽  
Kailong Li ◽  
Baiqing Hu ◽  
Chunjian Meng

The current research on integrated navigation is mainly focused on filtering or integrated navigation equipment. Studies systematically comparing and analyzing how to choose appropriate integrated filtering methods under different circumstances are lacking. This paper focuses on integrated navigation filters that are used by different filters and attitude parameters for inertial integrated navigation. We researched integrated navigation filters, established algorithms, and examined the relative merits for practical integrated navigation. Some suggestions for the use of filtering algorithms are provided.We completed simulations and car-mounted experiments for low-cost strapdown inertial navigation system(SINS) to assess the performance of the integrated navigation filtering algorithms.


Sign in / Sign up

Export Citation Format

Share Document