Failure Pressure Estimation of Corroded Pipeline with Different Depths of Interacting Defects Subjected to Internal Pressure

2013 ◽  
Vol 393 ◽  
pp. 1005-1010
Author(s):  
Ariz Ahmad Azmy ◽  
Saravanan Karuppanan ◽  
Azmi Abdul Wahab

Pipelines are one of the most reliable and safest ways to transport oil and gas from one location to another. However, if not handled and maintained properly, they will cause major destruction should one of these pipelines burst. A pipeline which has oil or gas flowing through it will be subjected to internal pressure due to the flow of the oil or gas. Furthermore, the chemical composition of the oil and gas acts as a corrosive agent towards the pipeline. The corrosion eventually becomes defects thus compromising the pipeline integrity. In addition, if two defects are close enough, they are treated as interacting defects. In this work, the pipeline integrity was first calculated using DNV RP-101 codes. After calculating the maximum operating pressure for the pipeline using the codes, Finite Element Analyses using ANSYS were carried out to simulate and model the pipeline with the interacting defects. The maximum operating pressure given by the FEA was then compared to the DNV codes. We found that despite consistency between DNV codes, the FEA analysis showed that geometry plays an important part in determining the values of failure pressure. The FEA analysis showed that by increasing the ratio of depth between the interacting defects, the failure pressure decreases. This was likely because defects of larger depths are more likely to fail at lower pressures. This contradicts the results obtained from DNV codes where the failure pressure is constant for the same effective defect depth over thickness, (d12/t)*.

Author(s):  
Xinfang Zhang ◽  
Allan Okodi ◽  
Leichuan Tan ◽  
Juliana Leung ◽  
Samer Adeeb

Abstract Coating and cathodic protection degradation can result in the generation of several types of flaws in pipelines. With the increasing number of aging pipelines, such defects can constitute serious concerns for pipeline integrity. When flaws are detected in pipelines, it is extremely important to have an accurate assessment of the associated failure pressure, which would inform the appropriate remediation decision of repairing or replacing the defected pipelines in a timely manner. Cracks-in-corrosion (CIC) represent a class of defect, for which there are no agreed upon method of assessment, with no existing analytical or numerical models to predict their failure pressures. This paper aims to create a set of validated numerical finite element analysis models that are suitable for accurately predicting the failure pressure of 3D cracks-in-corrosion defects using the eXtended Finite Element Method (XFEM) technique. The XFEM for this study was performed using the commercially available software package, ABAQUS Version 6.19. Five burst tests of API 5L X60 specimens with different defect depths (varying from 52% to 66%) that are available in the literature were used to calibrate the XFEM damage parameters (the maximum principal strain and the fracture energy). These parameters were varied until a reasonable match between the numerical results and the experimental measurements was achieved. Symmetry was used to reduce the computation time. A longitudinally oriented CIC defect was placed at the exterior of the pipe. The profile of the corroded area was assumed to be semi-elliptical. The pressure was monotonically increased in the XFEM model until the crack or damage reached the inner surface of the pipe. The results showed that the extended finite element predictions were in good agreement with the experimental data, with an average error of 5.87%, which was less conservative than the reported finite element method predictions with an average error of 17.4%. Six more CIC models with the same pipe dimension but different crack depths were constructed, in order to investigate the relationship between crack depth and the failure pressure. It was found that the failure pressure decreased with increasing crack depth; when the crack depth exceeded 75% of the total defect depth, the CIC defect could be treated as crack-only defects, since the failure pressure for the CIC model approaches that for the crack-only model for ratios of the crack depth to the total defect depth of 0.75 and 1. The versatility of several existing analytical methods (RSTRENG, LPC and CorLAS) in predicting the failure pressure was also discussed. For the corrosion-only defects, the LPC method predicted the closest failure pressure to that obtained using XFEM (3.5% difference). CorLAS method provided accurate results for crack-only defects with 7% difference. The extended finite element method (XFEM) was found to be very effective in predicting the failure pressure. In addition, compared to the traditional Finite Element Method (FEM) which requires extremely fine meshes and is impractical in modelling a moving crack, the XFEM is computationally efficient while providing accurate predictions.


Author(s):  
Celal Cakiroglu ◽  
Samer Adeeb ◽  
J. J. Roger Cheng ◽  
Millan Sen

Pipelines can be subjected to significant amounts of tensile forces due to geotechnical movements like slope instabilities and seismic activities as well as due to frost heave and thaw cycles in arctic regions. The tensile strain capacity εtcrit of pipelines is crucial in the prediction of rupture and loss of containment capability in these load cases. Currently the Oil and Gas Pipeline Systems code CSA Z662-11 0 contains equations for the prediction of εtcrit as a function of geometry and material properties of the pipeline. These equations resulted from extensive experimental and numerical studies carried out by Wang et al [2]–[6] using curved wide plate tests on pipes having grades X65 and higher. Verstraete et al 0 conducted curved wide plate tests at the University of Ghent which also resulted in tensile strain capacity prediction methods and girth weld flaw acceptability criteria. These criteria are included in the European Pipeline Research Group (EPRG) Tier 2 guidelines. Furthermore Verstrate et al 0 introduced a pressure correction factor of 0.5 in order to include the effect of internal pressure in the tensile strain capacity predictions in a conservative way. Further research by Wang et al with full scale pipes having an internal pressure factor of 0.72 also showed that εtcrit decreases in the presence of internal pressure [10]–[15]. In their work, Wang et al presented a clear methodology for the design of full scale experiments and numerical simulations to study the effect of internal pressure on the tensile strain capacity of pipes with girth weld flaws [10]–[15]. However, there has been limited testing to enable a precise understanding of the tensile strain capacity of pipes with grades less than X65 as a function of girth weld flaw sizes and the internal pressure. In this paper the experimental setup for the testing of grade X52 full scale specimens with 12″ diameter and ¼″ wall thickness is demonstrated. In the scope of this research 8 full scale specimens will be tested and the results will be used to formulate the tensile strain capacity of X52 pipes under internal pressure. The specimens are designed for the simultaneous application of displacement controlled tensile loading and the internal pressure. Finite element analysis is applied in the optimization process for the sizes of end plates and connection elements. Also the lengths of the full scale specimens are determined based on the results from finite element analysis. The appropriate lengths are chosen in such a way that between the location of the girth weld flaw and the end plates uniform strain zones could be obtained. The internal pressure in these experiments is ranging between pressure values causing 80% SMYS and 30% SMYS hoop stress. The end plates and connection elements of the specimens are designed in such a way that the tensile displacement load is applied with an eccentricity of 10% of the pipe diameter with the purpose of increasing the magnitude of tensile strains at the girth weld flaw location. The results of two full scale experiments of this research program are presented. The structural response from the experiments is compared to the finite element simulation. The remote strain values of the experiment are found to be higher than the εtcrit values predicted by the equations in 0.


Author(s):  
Barry Millet ◽  
Kaveh Ebrahimi ◽  
James Lu ◽  
Kenneth Kirkpatrick ◽  
Bryan Mosher

Abstract In the ASME Boiler and Pressure Vessel Code, nozzle reinforcement rules for nozzles attached to shells under external pressure differ from the rules for internal pressure. ASME BPVC Section I, Section VIII Division 1 and Section VIII Division 2 (Pre-2007 Edition) reinforcement rules for external pressure are less stringent than those for internal pressure. The reinforcement rules for external pressure published since the 2007 Edition of ASME BPVC Section VIII Division 2 are more stringent than those for internal pressure. The previous rule only required reinforcement for external pressure to be one-half of the reinforcement required for internal pressure. In the current BPVC Code the required reinforcement is inversely proportional to the allowable compressive stress for the shell under external pressure. Therefore as the allowable drops, the required reinforcement increases. Understandably, the rules for external pressure differ in these two Divisions, but the amount of required reinforcement can be significantly larger. This paper will examine the possible conservatism in the current Division 2 rules as compared to the other Divisions of the BPVC Code and the EN 13445-3. The paper will review the background of each method and provide finite element analyses of several selected nozzles and geometries.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
G. Terán ◽  
S. Capula-Colindres ◽  
J. C. Velázquez ◽  
D. Angeles-Herrera ◽  
E. Torres-Santillán

In this study, failure pressure prediction was conducted in a pipeline with localized corrosion in base metal (BM), heat-affected zone (HAZ), and welding bead (WB) by finite element (FE) analysis. In the gas pipeline industry, there are methods (B31G, RESTRENGH, Shell, DNV, PCORR, and Fitnet FFS) and authors' approaches (Choi and Cronin) to determine the failure pressure. However, one disadvantage of these methods is that their equations do not consider damage corrosion at the HAZ or WB. They consider corrosion only in the BM. The corrosion shape is rectangular with a radius at the edges. In this study, the corrosion defect depth (d) was varied. The corrosion defect length (L) and the corrosion defect width (W) were equal. A type of rectangular corrosion defect with a radius at the edges in the longitudinal and circumferential directions was proposed. True stress–strain curves for BM, HAZ, and WB of an API 5 L X52 were introduced in the FE program. The results show that the pressure decreases as d, L, and W increase. This is because the damage corrosion is more severe as it grows, which causes the failure pressure to decrease.


2013 ◽  
Vol 318 ◽  
pp. 562-566 ◽  
Author(s):  
Xian Yong Zhang ◽  
Jin Feng

Strength of residual wall thickness reliability was studied by Monte-Carlo and finite element method, based on 40in X70 steel and 48in X80 steel which were often used in oil and gas transport pipeline. Pipe with defects in different residual wall thinkness, calculated the critical residual value of wall thickness, and analysed the defect depth and width of influence on pipe reliability. The results provide basis for pipeline safety evaluation and reasonable replacement.


1971 ◽  
Vol 93 (4) ◽  
pp. 905-912 ◽  
Author(s):  
R. C. Gwaltney ◽  
J. M. Corum

Compact reinforcement for a series of models having single nozzles radially attached to spherical shells was examined by means of finite element analyses. Parameters studied were diameter-to-thickness ratios of the nozzles, diameter-to-thickness ratios of the spherical shells, percentage of reinforcement, outside reinforcement, inside reinforcement, and “balanced” reinforcement (reinforcement on both the inside and outside surfaces). The loading was internal pressure. Comparisons of theoretical predictions with experimental results are presented for one reinforced model. Twelve models were analyzed to examine the effect of compact reinforcement.


Author(s):  
Shulong Zhang ◽  
Wenxing Zhou

Abstract The present study proposes a new semi-empirical burst capacity model for corroded oil and gas pipelines under combined internal pressure and longitudinal compression. The proposed model evaluates the burst capacity of a corroded pipeline under combined loads as the burst capacity of the pipeline under internal pressure only, which is developed in a recently completed study, multiplied by a correction factor to account for the effect of the longitudinal compression. Extensive parametric elastoplastic finite element analyses (FEA) are carried out, the results of which are used as the basis to develop the correction factor as a function of the corrosion defect sizes and magnitude of the longitudinal compressive stress. The proposed model is validated by a large set of parametric FEA and full-scale burst tests reported in the literature, and is shown to provide marked improvements over two existing models, the DNV and RPA-PLLC models, for corroded pipelines under combined loads.


2004 ◽  
Vol 126 (2) ◽  
pp. 179-183 ◽  
Author(s):  
Do-Jun Shim ◽  
Jae-Boong Choi ◽  
Young-Jin Kim

Failure assessment of a pipe with local wall thinning draws increasing attention in the nuclear power plant industry. Although many guidelines have been developed and are used for assessing the integrity of a wall-thinned pipeline, most of these guidelines consider only pressure loading and thus neglect bending loading. As most pipelines in nuclear power plants are subjected to internal pressure and bending moment, an assessment procedure for locally wall-thinned pipeline subjected to combined loading is urgently needed. In this paper, three-dimensional finite element (FE) analyses are carried out to simulate full-scale pipe tests conducted for various shapes of wall-thinned area under internal pressure and bending moment. Maximum moments based on ultimate tensile stress were obtained from FE results to predict the failure of the pipe. These results are compared with test results, showing good agreement. Additional finite element analyses are then performed to investigate the effect of key parameters, such as wall-thinned depth, wall-thinned angle and wall-thinned length, on maximum moment. Moreover, the effect of internal pressure on maximum moment was investigated. Change of internal pressure did not show significant effect on the maximum moment.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Xinjian Duan ◽  
Michael J. Kozluk ◽  
Sandra Pagan ◽  
Brian Mills

Aging steam generator tubes have been experiencing a variety of degradations such as pitting, fretting wear, erosion-corrosion, thinning, cracking, and denting. To assist with steam generator life cycle management, some defect-specific flaw models have been developed from burst pressure testing results. In this work, an alternative approach; heterogeneous finite element model (HFEM), is explored. The HFEM is first validated by comparing the predicted failure modes and failure pressure with experimental measurements of several tubes. Several issues related to the finite element analyses such as temporal convergence, mesh size effect, and the determination of critical failure parameters are detailed. The HFEM is then applied to predict the failure pressure for use in a fitness-for-service condition monitoring assessment of one removed steam generator tube. HFEM not only calculates the correct failure pressure for a variety of defects, but also predicts the correct change of failure mode. The Taguchi experimental design method is also applied to prioritize the flaw dimensions that affect the integrity of degraded steam generator tubes such as the defect length, depth, and width. It has been shown that the defect depth is the dominant parameter controlling the failure pressure. The failure pressure varies almost linearly with defect depth when the defect length is greater than two times the tube diameter. An axial slot specific flaw model is finally developed.


Sign in / Sign up

Export Citation Format

Share Document