A Buck Converter Design Based on Sliding Mode Control Strategy

2013 ◽  
Vol 401-403 ◽  
pp. 2033-2036
Author(s):  
Yu Gao ◽  
Chu Zhou ◽  
Bin Zhou ◽  
Shao Cheng Qu

A sliding mode controller for buck converter based on PWM technology is discussed.Firstly, the schematic diagram of buck converter circuit based on a slidingmode control strategy is designed. Then a sliding mode control approach basedon reaching law is constructed. A circuit model based on MULTISIM is proposed.Finally, the simulation result show that the proposed method can effectively improvethe system dynamic characteristics.

2011 ◽  
Vol 317-319 ◽  
pp. 1490-1494 ◽  
Author(s):  
Bao Quan Jin ◽  
Yan Kun Wang ◽  
Ya Li Ma

The parameters uncertainty and external disturbance play a negative role to improve electro-hydraulic position servo system performance. The valve controlled cylinder system model is established, using the traditional PID control strategy and reaching law control strategy for simulating the system, respectively, the two methods have similar control effects in the ideal model, but considering the external disturbances, the index approaches sliding mode control law has better response speed and stability. Research shown that sliding mode control algorithm has an important role for improving the performance of hydraulic servo position control system.


2015 ◽  
Vol 741 ◽  
pp. 655-658 ◽  
Author(s):  
Cai Yun Dong ◽  
Hai Jun Wang ◽  
Wen Yong Cui

The sliding mode control approach based on double power exponential reaching law is proposed for the hydraulic servo system. With the example of the hydraulic servo system in the lab, the mathematic model is established and the new controller is presented and simulated. Simulation results show that: the proposed approach has high track precision, fast response, small chattering and ensures dynamic quality of the system.


2011 ◽  
Vol 378-379 ◽  
pp. 521-524
Author(s):  
Li Ping Fan ◽  
Ying Song ◽  
Jun Zhang

Bioprocesses have high nonlinearity and parameter uncertainty. In view of these specific natures of the bioreactor, system identification method was firstly used to linearize the nonlinear system and simplify the model of the biological reactor; then a new sliding mode controller with adaptive reaching law is designed for the reactor. The control method can not only analysis the sliding mode movement near or along the switching surface, but also design the dynamic process in trending segments of the system effectively, thus ensure good movement quality in the entire state space. Simulation results prove that the sliding mode control with adaptive reaching law can improve the control performance with negligible chattering and enhanced robustness.


2021 ◽  
Vol 236 ◽  
pp. 01020
Author(s):  
XU Wen-kuan ◽  
ZHANG You-peng

A resonant sliding mode control strategy based on the resonant sliding film surface is proposed to control the turbine-side converter of the wind turbine so that the wind turbine can be connected to the grid smoothly under the condition of unbalanced grid voltage. Taking the doubly-fed asynchronous wind generator working under unbalanced grid voltage as the control object, establish its mathematical model and its generator-side converter. Taking the instantaneous power in the α β static coordinate system as the state variable of the sliding mode controller, the resonant sliding mode controller is studied, its parameters are designed, and experiments are carried out in the simulation platform MATLAB. A 1.5MW motor model was established and tested, and it was verified that the resonant sliding mode control strategy can control the grid voltage without static error and realize the smooth grid connection of wind turbines.


2019 ◽  
Vol 29 (3) ◽  
pp. 517-525 ◽  
Author(s):  
Andrzej Bartoszewicz ◽  
Katarzyna Adamiak

Abstract This study presents a new, reference trajectory based sliding mode control strategy for disturbed discrete time dynamical systems. The desired trajectory, which is generated externally according to an existing switching type reaching law, determines the properties of the emerging sliding motion of the system. It is proved that an appropriate choice of the trajectory generator parameters ensures the existence of the quasi-sliding motion of the system according to the definition by Gao et al. (1995) in spite of the influence of disturbances. Moreover, the paper shows that the application of the desired trajectory based reaching law results in a significant reduction in the quasi-sliding mode band width and errors of all state variables. Therefore, in comparison with Gao’s control method, the system’s robustness is increased. The paper also presents an additional modification of the reaching law, which guarantees a further reduction in the quasi-sliding mode band in the case of slowly varying disturbances. The results are confirmed with a simulation example.


Author(s):  
Antonius Nusawardhana ◽  
Stanislaw H. Zak

Optimality properties of synergetic controllers are analyzed using the Euler-Lagrange conditions and the Hamilton-Jacobi-Bellman equation. First, a synergetic control strategy is compared with the variable structure sliding mode control. The synergetic control design methodology turns out to be closely related to the methods of variable structure sliding mode control. In fact, the method of sliding surface design from the sliding mode control are essential for designing similar manifolds in the synergetic control approach. It is shown that the synergetic control strategy can be derived using tools from the calculus of variations. The synergetic control laws have simple structure because they are derived from the associated first-order differential equation. It is also shown that the synergetic controller for a certain class of linear quadratic optimal control problems has the same structure as the one generated using the linear quadratic regulator (LQR) approach by solving the associated Riccati equation.


Sign in / Sign up

Export Citation Format

Share Document