Spectral Element Simulation of Complex Particulate Flows

2013 ◽  
Vol 404 ◽  
pp. 318-323 ◽  
Author(s):  
Don Liu ◽  
Yi Fan Wang ◽  
Hai Bo Zhang

This paper uses a mathematical model Virtual Identity Particles, developed by the author, to simulate conjugated motion of complex particles in a fluid. Assimilated the advantages of Eulerian and Lagrangian approaches, this model treats each particle as a variable source term to the fluid and is designed for simulating numerous particles in two-phase flows. The economic formulation in this model is the salient feature. Considering both precision and computational cost, this model maintains an excellent balance between accuracy and efficiency in modeling particulate flows with complex particles. Simulation results demonstrate that this model is viable for investigating complex particulate flows, especially at a moderately high particle number density.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Don Liu ◽  
Yonglai Zheng

This paper develops the virtual identity particles (VIP) model to simulate two-phase flows involving complex-shaped particles. VIP assimilates the high efficiency of the Eulerian method and the convenience of the Lagrangian approach in tracking particles. It uses one fixed Eulerian mesh to compute the fluid field and the Lagrangian description to handle constitutive properties of particles. The interaction between the fluid and complex particles is characterized with source terms in the fluid momentum equations, while the same source terms are computed iteratively from the particulate Lagrangian equations. The advantage of VIP is its economy in modeling a two-phase flow problem almost at the cost of solving only the fluid phase with added source terms. This high efficiency in computational cost makes VIP viable for simulating particulate flows with numerous particles. Owing to the spectral convergence and high resolvability of the modal spectral element method, VIP provides acceptable resolution comparable to DNS but at much reduced computational cost. Simulation results indicate that VIP is promising for investigating flows with complex-shaped particles, especially abundant complex particles.


Author(s):  
Ikpe E. Aniekan ◽  
Owunna Ikechukwu ◽  
Satope Paul

Four different riser pipe exit configurations were modelled and the flow across them analysed using STAR CCM+ CFD codes. The analysis was limited to exit configurations because of the length to diameter ratio of riser pipes and the limitations of CFD codes available. Two phase flow analysis of the flow through each of the exit configurations was attempted. The various parameters required for detailed study of the flow were computed. The maximum velocity within the pipe in a two phase flow were determined to 3.42 m/s for an 8 (eight) inch riser pipe. After thorough analysis of the two phase flow regime in each of the individual exit configurations, the third and the fourth exit configurations were seen to have flow properties that ensures easy flow within the production system as well as ensure lower computational cost. Convergence (Iterations), total pressure, static pressure, velocity and pressure drop were used as criteria matrix for selecting ideal riser exit geometry, and the third exit geometry was adjudged the ideal exit geometry of all the geometries. The flow in the third riser exit configuration was modelled as a two phase flow. From the results of the two phase flow analysis, it was concluded that the third riser configuration be used in industrial applications to ensure free flow of crude oil and gas from the oil well during oil production.


1993 ◽  
Vol 7 (6) ◽  
pp. 842-851 ◽  
Author(s):  
M. Queiroz ◽  
M. P. Bonin ◽  
J. S. Shirolkar ◽  
R. W. Dawson

2016 ◽  
Vol 7 (32) ◽  
pp. 5123-5131 ◽  
Author(s):  
O. L. J. Virtanen ◽  
M. Brugnoni ◽  
M. Kather ◽  
A. Pich ◽  
W. Richtering

Many applications of poly(N-isopropylacrylamide) microgels necessitate robust control over particle size.


2017 ◽  
Vol 34 (7) ◽  
pp. 075203
Author(s):  
Rang-Yue Zhang ◽  
Yan-Hong Liu ◽  
Feng Huang ◽  
Zhao-Yang Chen ◽  
Chun-Yan Li

1998 ◽  
Vol 53 (17) ◽  
pp. 3099-3115 ◽  
Author(s):  
M. Hansen ◽  
V.A. Barker ◽  
O. Hassager

2016 ◽  
Vol 19 (2) ◽  
pp. 329-353 ◽  
Author(s):  
Florian Kummer ◽  
Tim Warburton

AbstractIn two-phase flow simulations, a difficult issue is usually the treatment of surface tension effects. These cause a pressure jump that is proportional to the curvature of the interface separating the two fluids. Since the evaluation of the curvature incorporates second derivatives, it is prone to numerical instabilities. Within this work, the interface is described by a level-set method based on a discontinuous Galerkin discretization. In order to stabilize the evaluation of the curvature, a patch-recovery operation is employed. There are numerous ways in which this filtering operation can be applied in the whole process of curvature computation. Therefore, an extensive numerical study is performed to identify optimal settings for the patch-recovery operations with respect to computational cost and accuracy.


2001 ◽  
Author(s):  
S. L. Chang ◽  
C. Q. Zhou ◽  
B. Golchert ◽  
M. Petrick

Abstract A typical glass furnace consists of a combustion space and a melter. The intense heat, generated from the combustion of fuel and air/oxygen in the combustion space, is transferred mainly by radiation to the melter where the melt sand and cullet (scrap glass) are melted, creating molten glass. The melter flow is a complex multi-phase flow including solid batches of sand/cullet and molten glass. Proper modeling of the flow patterns of the solid batch and liquid glass is a key to determining the glass quality and furnace efficiency. A multi-phase CFD code has been developed to simulate glass melter flow. It uses an Eulerian approach for both the solid batch and the liquid glass-melt flows. The mass, momentum, and energy conservation equations of the batch flow are used to solve for local batch particle number density, velocity, and temperature. In a similar manner, the conservation equations of mass, momentum, and energy of the glass-melt flow are used to solve for local liquid molten glass pressure, velocity, and temperature. The solid batch is melted on the top by the heat from the combustion space and from below by heat from the glass-melt flow. The heat transfer rate from the combustion space is calculated from a radiation model calculation while the heat transfer rate from the glass-melt flow to the solid batch is calculated from a model based on local particle number density and glass-melt temperature. Energy and mass are balanced between the batch and the glass-melt. Batch coverage is determined from local particle number density and velocity. A commercial-scale glass melter has been simulated at different operating/design conditions.


Sign in / Sign up

Export Citation Format

Share Document