scholarly journals GRAPH BASED CLUSTERING WITH CONSTRAINTS AND ACTIVE LEARNING

2021 ◽  
Vol 37 (1) ◽  
pp. 71-89
Author(s):  
Vu-Tuan Dang ◽  
Viet-Vu Vu ◽  
Hong-Quan Do ◽  
Thi Kieu Oanh Le

During the past few years, semi-supervised clustering has emerged as a new interesting direction in machine learning research. In a semi-supervised clustering algorithm, the clustering results can be significantly improved by using side information, which is available or collected from users. There are two main kinds of side information that can be learned in semi-supervised clustering algorithms: the class labels - called seeds or the pairwise constraints. The first semi-supervised clustering was introduced in 2000, and since that, many algorithms have been presented in literature. However, it is not easy to use both types of side information in the same algorithm. To address the problem, this paper proposes a semi-supervised graph based clustering algorithm that tries to use seeds and constraints in the clustering process, called MCSSGC. Moreover, we introduces a simple but efficient active learning method to collect the constraints that can boost the performance of MCSSGC, named KMMFFQS. In order to verify effectiveness of the proposed algorithm, we conducted a series of experiments not only on real data sets from UCI, but also on a document data set applied in an Information Extraction of Vietnamese documents. These obtained results show that the proposed algorithm can significantly improve the clustering process compared to some recent algorithms.

2019 ◽  
Vol 35 (4) ◽  
pp. 373-384
Author(s):  
Cuong Le ◽  
Viet Vu Vu ◽  
Le Thi Kieu Oanh ◽  
Nguyen Thi Hai Yen

Though clustering algorithms have long history, nowadays clustering topic still attracts a lot of attention because of the need of efficient data analysis tools in many applications such as social network, electronic commerce, GIS, etc. Recently, semi-supervised clustering, for example, semi-supervised K-Means, semi-supervised DBSCAN, semi-supervised graph-based clustering (SSGC) etc., which uses side information, has received a great deal of attention. Generally, there are two forms of side information: seed form (labeled data) and constraint form (must-link, cannot-link). By integrating information provided by the user or domain expert, the semi-supervised clustering can produce expected results. In fact, clustering results usually depend on side information provided, so different side information will produce different results of clustering. In some cases, the performance of clustering may decrease if the side information is not carefully chosen. This paper addresses the problem of efficient collection of seeds for semi-supervised clustering, especially for graph based clustering by seeding (SSGC). The properly collected seeds can boost the quality of clustering and minimize the number of queries solicited from the user. For this purpose, we have developed an active learning algorithm (called SKMMM) for the seeds collection task, which identifies candidates to solicit users by using the K-Means and min-max algorithms. Experiments conducted on real data sets from UCI and a real collected document data set show the effectiveness of our approach compared with other methods.


2011 ◽  
pp. 24-32 ◽  
Author(s):  
Nicoleta Rogovschi ◽  
Mustapha Lebbah ◽  
Younès Bennani

Most traditional clustering algorithms are limited to handle data sets that contain either continuous or categorical variables. However data sets with mixed types of variables are commonly used in data mining field. In this paper we introduce a weighted self-organizing map for clustering, analysis and visualization mixed data (continuous/binary). The learning of weights and prototypes is done in a simultaneous manner assuring an optimized data clustering. More variables has a high weight, more the clustering algorithm will take into account the informations transmitted by these variables. The learning of these topological maps is combined with a weighting process of different variables by computing weights which influence the quality of clustering. We illustrate the power of this method with data sets taken from a public data set repository: a handwritten digit data set, Zoo data set and other three mixed data sets. The results show a good quality of the topological ordering and homogenous clustering.


2021 ◽  
pp. 1-18
Author(s):  
Angeliki Koutsimpela ◽  
Konstantinos D. Koutroumbas

Several well known clustering algorithms have their own online counterparts, in order to deal effectively with the big data issue, as well as with the case where the data become available in a streaming fashion. However, very few of them follow the stochastic gradient descent philosophy, despite the fact that the latter enjoys certain practical advantages (such as the possibility of (a) running faster than their batch processing counterparts and (b) escaping from local minima of the associated cost function), while, in addition, strong theoretical convergence results have been established for it. In this paper a novel stochastic gradient descent possibilistic clustering algorithm, called O- PCM 2 is introduced. The algorithm is presented in detail and it is rigorously proved that the gradient of the associated cost function tends to zero in the L 2 sense, based on general convergence results established for the family of the stochastic gradient descent algorithms. Furthermore, an additional discussion is provided on the nature of the points where the algorithm may converge. Finally, the performance of the proposed algorithm is tested against other related algorithms, on the basis of both synthetic and real data sets.


2020 ◽  
Vol 12 (23) ◽  
pp. 4007
Author(s):  
Kasra Rafiezadeh Shahi ◽  
Pedram Ghamisi ◽  
Behnood Rasti ◽  
Robert Jackisch ◽  
Paul Scheunders ◽  
...  

The increasing amount of information acquired by imaging sensors in Earth Sciences results in the availability of a multitude of complementary data (e.g., spectral, spatial, elevation) for monitoring of the Earth’s surface. Many studies were devoted to investigating the usage of multi-sensor data sets in the performance of supervised learning-based approaches at various tasks (i.e., classification and regression) while unsupervised learning-based approaches have received less attention. In this paper, we propose a new approach to fuse multiple data sets from imaging sensors using a multi-sensor sparse-based clustering algorithm (Multi-SSC). A technique for the extraction of spatial features (i.e., morphological profiles (MPs) and invariant attribute profiles (IAPs)) is applied to high spatial-resolution data to derive the spatial and contextual information. This information is then fused with spectrally rich data such as multi- or hyperspectral data. In order to fuse multi-sensor data sets a hierarchical sparse subspace clustering approach is employed. More specifically, a lasso-based binary algorithm is used to fuse the spectral and spatial information prior to automatic clustering. The proposed framework ensures that the generated clustering map is smooth and preserves the spatial structures of the scene. In order to evaluate the generalization capability of the proposed approach, we investigate its performance not only on diverse scenes but also on different sensors and data types. The first two data sets are geological data sets, which consist of hyperspectral and RGB data. The third data set is the well-known benchmark Trento data set, including hyperspectral and LiDAR data. Experimental results indicate that this novel multi-sensor clustering algorithm can provide an accurate clustering map compared to the state-of-the-art sparse subspace-based clustering algorithms.


2013 ◽  
Vol 411-414 ◽  
pp. 1884-1893
Author(s):  
Yong Chun Cao ◽  
Ya Bin Shao ◽  
Shuang Liang Tian ◽  
Zheng Qi Cai

Due to many of the clustering algorithms based on GAs suffer from degeneracy and are easy to fall in local optima, a novel dynamic genetic algorithm for clustering problems (DGA) is proposed. The algorithm adopted the variable length coding to represent individuals and processed the parallel crossover operation in the subpopulation with individuals of the same length, which allows the DGA algorithm clustering to explore the search space more effectively and can automatically obtain the proper number of clusters and the proper partition from a given data set; the algorithm used the dynamic crossover probability and adaptive mutation probability, which prevented the dynamic clustering algorithm from getting stuck at a local optimal solution. The clustering results in the experiments on three artificial data sets and two real-life data sets show that the DGA algorithm derives better performance and higher accuracy on clustering problems.


Author(s):  
UREERAT WATTANACHON ◽  
CHIDCHANOK LURSINSAP

Existing clustering algorithms, such as single-link clustering, k-means, CURE, and CSM are designed to find clusters based on predefined parameters specified by users. These algorithms may be unsuccessful if the choice of parameters is inappropriate with respect to the data set being clustered. Most of these algorithms work very well for compact and hyper-spherical clusters. In this paper, a new hybrid clustering algorithm called Self-Partition and Self-Merging (SPSM) is proposed. The SPSM algorithm partitions the input data set into several subclusters in the first phase and, then, removes the noisy data in the second phase. In the third phase, the normal subclusters are continuously merged to form the larger clusters based on the inter-cluster distance and intra-cluster distance criteria. From the experimental results, the SPSM algorithm is very efficient to handle the noisy data set, and to cluster the data sets of arbitrary shapes of different density. Several examples for color image show the versatility of the proposed method and compare with results described in the literature for the same images. The computational complexity of the SPSM algorithm is O(N2), where N is the number of data points.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-7
Author(s):  
Yadgar Sirwan Abdulrahman

Clustering is one of the essential strategies in data analysis. In classical solutions, all features are assumed to contribute equally to the data clustering. Of course, some features are more important than others in real data sets. As a result, essential features will have a more significant impact on identifying optimal clusters than other features. In this article, a fuzzy clustering algorithm with local automatic weighting is presented. The proposed algorithm has many advantages such as: 1) the weights perform features locally, meaning that each cluster's weight is different from the rest. 2) calculating the distance between the samples using a non-euclidian similarity criterion to reduce the noise effect. 3) the weight of the features is obtained comparatively during the learning process. In this study, mathematical analyzes were done to obtain the clustering centers well-being and the features' weights. Experiments were done on the data set range to represent the progressive algorithm's efficiency compared to other proposed algorithms with global and local features


2013 ◽  
Vol 3 (4) ◽  
pp. 1-14 ◽  
Author(s):  
S. Sampath ◽  
B. Ramya

Cluster analysis is a branch of data mining, which plays a vital role in bringing out hidden information in databases. Clustering algorithms help medical researchers in identifying the presence of natural subgroups in a data set. Different types of clustering algorithms are available in the literature. The most popular among them is k-means clustering. Even though k-means clustering is a popular clustering method widely used, its application requires the knowledge of the number of clusters present in the given data set. Several solutions are available in literature to overcome this limitation. The k-means clustering method creates a disjoint and exhaustive partition of the data set. However, in some situations one can come across objects that belong to more than one cluster. In this paper, a clustering algorithm capable of producing rough clusters automatically without requiring the user to give as input the number of clusters to be produced. The efficiency of the algorithm in detecting the number of clusters present in the data set has been studied with the help of some real life data sets. Further, a nonparametric statistical analysis on the results of the experimental study has been carried out in order to analyze the efficiency of the proposed algorithm in automatic detection of the number of clusters in the data set with the help of rough version of Davies-Bouldin index.


2013 ◽  
Vol 22 (03) ◽  
pp. 1350013 ◽  
Author(s):  
OUIEM BCHIR ◽  
HICHEM FRIGUI ◽  
MOHAMED MAHER BEN ISMAIL

Many machine learning applications rely on learning distance functions with side information. Most of these distance metric learning approaches learns a Mahalanobis distance. While these approaches may work well when data is in low dimensionality, they become computationally expensive or even infeasible for high dimensional data. In this paper, we propose a novel method of learning nonlinear distance functions with side information while clustering the data. The new semi-supervised clustering approach is called Semi-Supervised Fuzzy clustering with Learnable Cluster dependent Kernels (SS-FLeCK). The proposed algorithm learns the underlying cluster-dependent dissimilarity measure while finding compact clusters in the given data set. The learned dissimilarity is based on a Gaussian kernel function with cluster dependent parameters. This objective function integrates penalty and reward cost functions. These cost functions are weighted by fuzzy membership degrees. Moreover, they use side-information in the form of a small set of constraints on which instances should or should not reside in the same cluster. The proposed algorithm uses only the pairwise relation between the feature vectors. This makes it applicable when similar objects cannot be represented by a single prototype. Using synthetic and real data sets, we show that SS-FLeCK outperforms several other algorithms.


Author(s):  
Derrick S. Boone

The accuracy of “stopping rules” for determining the number of clusters in a data set is examined as a function of the underlying clustering algorithm being used. Using a Monte Carlo study, various stopping rules, used in conjunction with six clustering algorithms, are compared to determine which rule/algorithm combinations best recover the true number of clusters. The rules and algorithms are tested using disparately sized, artificially generated data sets that contained multiple numbers and levels of clusters, variables, noise, outliers, and elongated and unequally sized clusters. The results indicate that stopping rule accuracy depends on the underlying clustering algorithm being used. The cubic clustering criterion (CCC), when used in conjunction with mixture models or Ward’s method, recovers the true number of clusters more accurately than other rules and algorithms. However, the CCC was more likely than other stopping rules to report more clusters than are actually present. Implications are discussed.


Sign in / Sign up

Export Citation Format

Share Document