Preform and Die Designs for Hot Forging Process of Linear Slide Block

2013 ◽  
Vol 419 ◽  
pp. 395-400 ◽  
Author(s):  
Cheng Hsien Yu ◽  
Jinn Jong Sheu

In this study, the preform and die designs of hot forging process were proposed for a long-flat slide block. This block is assembled to the linear slide for carrying the moving table. Three different billet geometry designs were proposed to obtain good die filling. The volume of the flash is limited to 30% with a flash thickness design in 3 mm. The forging die was designed with four ejectors to push up the forged part smoothly. The proposed billet geometries and die design were evaluated using CAE simulation. The simulation results indicated that the suitable perform design is able to achieve better material flow. The flash flow control is able to reduce the forming load and improve the die filling. The forging experiments were carried out to verify the proposed method, the experiment results showed good agreement with the CAE simulations. For the Improvement of wear and corrosion resistances of Inconel718 (In718) surface, high velocity oxygen fuel (HVOF) thermal spray coating of micron-sized WC-Cr-C-Ni powder was coated onto Inconel718 surface and laser heat-treatment of the coating was carried out. Porous coating of porosity 2.2±0.4% was prepared by HVOF coating, and it was improved by laser heat-treatment, reducing the porosity to 0.35±0.08%. Micro-hardness of laser heat-treated coating increased more than four times compared to the surface of In718. Friction coefficient decreased by HVOF coating and laser heat-treatment. Wear resistance improved, decreasing the wear depth by the coating and laser heating. The interface between coating and In718 was compacted, and elements diffused from both coating and inconel718 substrate to interface, forming metal rich buffer zone (interface) and enhancing the adhesion of coating. Corrosion resistance improved by coating in sea water 3.5% NaCl solution and in 1M HCl acid, but it worsened in 1M NaOH base. For the improvement of wear and corrosion resistances of Inconel718, HVOF WC-metal power coating and laser heat-treatment are recommended.

2017 ◽  
Vol 62 (2) ◽  
pp. 1209-1213
Author(s):  
C. Jung ◽  
M.G. Lee ◽  
Y. Jeon

Abstract Many high performance and permanent service parts require suitable material characteristics-high fatigue strength is one of the most important characteristics. For this reason, surface treatment processes are essential to increase the material performance and avoid the use of costly ineffective material. There exist various surface treatment processes for various applications. Each process has advantages and disadvantages and hybridization can solve various problems. The micro-forging process delivers a controlled and uniform surface hardness, but the depth of the forged surface is limited. On the other hand, laser heat treatment can increase the hardness drastically, but the surface may become brittle, which reduces the fatigue life. Laser-assisted micro-forging is a novel hybrid process of laser heat treatment and micro-forging that has the potential to increase the forging depth and relax the stress caused by the high temperature of the forging process. This study examines the effect of laser preheating in the micro-forging of AISI 4140. The processes were varied as follows: no treatment, micro-forging only, and laser-assisted micro-forging. The fatigue strength of the specimens was examined by means of an ultrasonic fatigue tester and then compared. The microstructural changes were investigated with respect to the processes by using scanning electron microscopy. In conclusion, it was confirmed that the laser preheating auxiliary forging affects the fatigue life. It was confirmed that the fatigue life was the mostly increased in 550°C temperature laser preheating micro forging process and the temperature was identified as the most important factor.


2021 ◽  
Vol 6 (1 (114)) ◽  
pp. 72-80
Author(s):  
Oleksandr Danyleiko ◽  
Vitaliy Dzhemelinskyi ◽  
Dmytro Lesyk

A technique is presented for hardening metal products, in particular, the main tools (hammers) and cases of core drilling bits made of steel 30HGSA, using thermomechanical surface treatment according to a separate scheme. The method of combined laser thermomechanical hardening used in the study consists in the use of shot peening followed by laser heat treatment. Its use makes it possible to increase the operational properties of steel products, in particular, their wear and corrosion resistance. Based on the results of theoretical and experimental studies, the paper substantiates the features of dynamic surface plastic deformation for the analysis of impact during shot peening. The advantages of using laser hardening without surface melting are presented. Experimental research methods are proposed for determining the structural-phase composition, structure of the surface layer, hardness and microhardness of the hardened zones of steel 30HGSA. The range of rational modes of impact shot peening and thermal laser treatment has been determined. A device for testing samples for wear resistance has been developed. Methods of testing for wear and corrosion resistance of the surface of samples are proposed for assessing the tribological properties and contact interaction of materials under quasi-static and dynamic loading conditions. It is concluded that rational technological modes of hardening tools made of steel 30HGSA using combined laser thermomechanical treatment allow increasing the depth of the hardened layer by ~1.5 times compared to laser heat treatment. In addition, they provide the microhardness of the surface layer of ~5400 MPa, which is ~2.5 times higher than the microhardness of the base material


2013 ◽  
Vol 419 ◽  
pp. 381-387
Author(s):  
Hui Gon Chun ◽  
Yun Kon Joo ◽  
Jae Hong Yoon ◽  
Tong Yul Cho ◽  
Wei Fang ◽  
...  

For the Improvement of wear and corrosion resistances of Inconel718 (In718) surface, high velocity oxygen fuel (HVOF) thermal spray coating of micron-sized WC-Cr-C-Ni powder was coated onto Inconel718 surface and laser heat-treatment of the coating was carried out. Porous coating of porosity 2.2±0.4% was prepared by HVOF coating, and it was improved by laser heat-treatment, reducing the porosity to 0.35±0.08%. Micro-hardness of laser heat-treated coating increased more than four times compared to the surface of In718. Friction coefficient decreased by HVOF coating and laser heat-treatment. Wear resistance improved, decreasing the wear depth by the coating and laser heating. The interface between coating and In718 was compacted, and elements diffused from both coating and inconel718 substrate to interface, forming metal rich buffer zone (interface) and enhancing the adhesion of coating. Corrosion resistance improved by coating in sea water 3.5% NaCl solution and in 1M HCl acid, but it worsened in 1M NaOH base. For the improvement of wear and corrosion resistances of Inconel718, HVOF WC-metal power coating and laser heat-treatment are recommended.


2020 ◽  
Vol 107 (1-2) ◽  
pp. 39-47
Author(s):  
Luana De Lucca de Costa ◽  
Alberto Moreira Guerreiro Brito ◽  
André Rosiak ◽  
Lirio Schaeffer

2014 ◽  
Vol 81 ◽  
pp. 480-485 ◽  
Author(s):  
Takefumi Arikawa ◽  
Daisuke Yamabe ◽  
Hideki Kakimoto

Author(s):  
Rachid Fakir ◽  
Noureddine Barka ◽  
Jean Brousseau

This paper presents a numerical model able to control the temperature distribution along a 4340 steel cylinder heat-treated with Nd: YAG laser. The numerical model developed using the numerical finite element method, was based on a study of surface temperature variation and the adjustment of this temperature by a control of the heat treatment laser power. The proposed analytical approach was built gradually by (i) the development of a numerical model of laser heat treatment of the cylindrical workpiece, (ii) an analysis of the results of simulations and experimental tests, (iii) development of a laser power adjustment approach, and (iv) proposal of a laser power control predictor using neural networks. This approach was made possible by highlighting the influence of the fixed (non-variable) parameters of the laser heat treatment on the case depth, and has shown that it is possible by controlling the laser parameters to homogenize the distribution of the maximum temperature reached on the surface for a uniform case depth. The feasibility and effectiveness of the proposed approach leads to a reliable and accurate model able to guarantee a uniform surface temperature and a regular case depth for a cylindrical workpiece of a length of 50-mm and with a diameter of between 16-mm and 22-mm.


2010 ◽  
Author(s):  
Byungki Jung ◽  
Jing Sha ◽  
Florencia Paredes ◽  
Christopher K. Ober ◽  
Michael O. Thompson ◽  
...  

2019 ◽  
Vol 743 ◽  
pp. 294-300 ◽  
Author(s):  
Kun Wang ◽  
Aiping Wei ◽  
Zimu Shi ◽  
Xizhang Chen ◽  
Jixing Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document