Research on Bearing Characteristics of the Digging Foundation in Slopes Based on Interface

2013 ◽  
Vol 423-426 ◽  
pp. 2040-2044
Author(s):  
Bin Peng ◽  
Yi Min Shang ◽  
Rui Shan Tan ◽  
Tao Mei

The numerical simulation model was established by using numerical simulation tools of FLAC3D, through establishing interface for digging foundation-soil, which can consider mutual effect of digging foundation-soil. Bearing capacities of the digging foundation in slopes is calculated. The affecting factors of the bearing capacity are analyzed. The results show that the bearing capacity has a positive correlation with the distance between the foundation and the slope and has a negative correlation with the slope ratio, which can be expressed as a quadratic polynomial. Nonlinear regression analysis of calculation data are carried out and the fitting formula of the capacity ratio between pile in the slope and pile in the flat is obtained. Finally, the calculation method of horizontal bearing capacity about pile in the slope is developed, which can provide a reference to specification revision and engineering.

2013 ◽  
Vol 423-426 ◽  
pp. 1292-1295 ◽  
Author(s):  
Xing Yun Wang ◽  
Bin Peng ◽  
Xiao Chao Tang ◽  
Lian Fan

Based on the numerical simulation method, this paper has established the numerical simulation method by using of finite difference software of FLAC3D through establishing interface for digging pile-soil. It can consider mutual effect of digging pile-soil. The uplift bearing capacity of the digging pile in slope ground was calculated and the affecting factors of the bearing capacity were analyzed. The results show that the uplift bearing capacity has a negative correlation with the slope ratio, and has a positive correlation with the width or height of the foundation, which can be expressed as a quadratic polynomial. But when the slope ratio is smaller than a certain extent, the capacity no longer increases. Nonlinear regression analysis of calculation data are carried out. Finally, the calculation method of uplift bearing capacity about pile in the slope is developed, which can provide a reference to specification revision and engineering.


2013 ◽  
Vol 423-426 ◽  
pp. 1243-1247
Author(s):  
Bin Peng ◽  
Xing Yun Wang ◽  
Yu Wang ◽  
He Huang

Combining with practical engineering, geometry optimization and engineering applications of transmission tower foundation in the slope is researched by using the finite-difference software FLAC3D. The variation of the pullout, vertical and horizontal ultimate bearing capacity with the diameter and length of the pile is analyzed. And optimization program of actual project is given. Research shows that when the pile length is constant, the variation of the pullout and vertical ultimate bearing capacity is increasing with the diameter increasing significantly and the horizontal ultimate bearing capacity is not significant. When the diameter is constant, the pullout, vertical and horizontal ultimate bearing capacity is increasing with the length increasing significantly. By analyzing nonlinear regression analysis of calculation data, the formula of the ultimate bearing capacity is carried out, which can consider the different pile diameters and lengths. When the gradient and distance of slopes is constant, the pullout, vertical and horizontal ultimate bearing capacity can be carried out with the formula, which can provide a reference to specification revision and engineering.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Shaojuan Su ◽  
Tianlin Wang ◽  
Chunbo Zhen ◽  
Fan Zhang

The ultimate strength of the pressure-resistant shells is degraded due to corrosion pit on the surface of the shells. The underwater glider is prone to pit corrosion damage after working in the water for a long time. This study is aimed at development of an assessing formula for ultimate strength of pressure-resistant shells with pit damage. Firstly, a parameterized geometry model of the pit is determined under the assumption that the pits are elliptical. Secondly, a finite element numerical simulation model is established and the numerical simulation results are analyzed to find that the effect of pit damage on the pressure-resistant shell is obvious. Thirdly, the influences of some parameters (relative length, relative width, and relative depth) of pit on the ultimate strength are studied. The regular curve of the influence of geometric parameters on ultimate strength is drawn. Lastly, the ultimate strength assessment formula of pressure-resistant shells was obtained from the data by nonlinear FEM based on the regression function of multiple nonlinear regression analysis by nonlinear regression analysis function regress which can provide the foundation to assess the ultimate strength of damaged pressure-resistant shells.


2019 ◽  
Vol 3 (3) ◽  
pp. 73 ◽  
Author(s):  
Mohamad Karaki ◽  
Rafic Younes ◽  
Francois Trochu ◽  
Pascal Lafon

A great amount of attention has been given to the evaluation of the permeability tensor and several methods have been implemented for this purpose: experimental methods, as well as numerical and analytical methods. Numerical simulation tools are being seriously developed to cover the evaluation of permeability. However, the results are still far from matching reality. On the other hand, many problems still intervene in the experimental measurement of permeability, since it depends on several parameters including personal performance, preparation of specimens, equipment accuracy, and measurement techniques. Errors encountered in these parameters may explain why inconsistent measurements are obtained which result in unreliable experimental evaluation of permeability. However, good progress was done in the second international Benchmark, wherein a method to measure the in-plane permeability was agreed on by 12 institutes and universities. Critical researchers’ work was done in the field of analytical methods, and thus different empirical and analytical models have emerged, but most of those models need to be improved. Some of which are based on Cozeny-Karman equation. Others depend on numerical simulation or experiment to predict the macroscopic permeability. Also, the modeling of permeability of unidirectional fiber beds have taken the greater load of concern, whereas that of fiber bundle permeability prediction remain limited. This paper presents a review on available methods for evaluating unidirectional fiber bundles and engineering fabric permeability. The progress of each method is shown in order to clear things up.


2014 ◽  
Vol 501-504 ◽  
pp. 248-253
Author(s):  
Liu Yong Cheng ◽  
Shan Xiong Chen ◽  
Xi Chang Xu ◽  
Xiao Jie Chu ◽  
Tong Bing Lei

The regular pattern of the lateral friction transmission is one of the most critical influences on the ultimate uplift bearing capacity. The pile foundation in the incline under the pulling force has a wide variety of characteristics which is different with the normal pile. Numerical simulation is done by the use of FLAC3D in this paper. The regular pattern of the lateral friction transmission of the pile in the incline under the pulling force is studied. And the influence factors on the lateral friction transmission such as the slope gradient, the length and location of piles are discussed. The results show that the incline has a great influence on the lateral friction transmission. The lateral friction which is away from the incline-side is about 30% to 50% bigger than the incline-side. The slope gradient and the location of piles all have a great influence on the lateral friction transmission.


Sign in / Sign up

Export Citation Format

Share Document