Advances in Monitoring of Reinforcement Corrosion in Concrete Structures

2013 ◽  
Vol 438-439 ◽  
pp. 784-788
Author(s):  
Jin Wu

Corrosion of steel bars has a serious influence on durability and safety of reinforced concrete structures, which should be effectively monitored for the maintenance of reinforced concrete structures. This paper reviews several main techniques firstly, and presents the ongoing work at Nanjing University of Aeronautics and Astronautics to develop sensors to monitor the corrosion of reinforcement in concrete. It is hoped that the paper will be helpful to the field engineers and laboratory researchers who are monitoring and studying the corrosion of reinforcement in concrete structures.

Author(s):  
Mohamed A. Ismail ◽  
Han-Seung Lee ◽  
Mohd Warid Hussin

Corrosion of steel reinforcement embedded in concrete is one of the main causes of degradation of reinforced concrete structures. Degradation occurs in reinforced concrete structures from corrosion caused by the Chloride ingress into concrete. That degradation has a severe impact on the structure in terms of maintenance and rehabilitation costs. Therefore, early detection of reinforcement corrosion is important for efficient maintenance, repair and planning. Meanwhile, the evaluation of the corrosion of reinforcement by non-destructive measurements have been used a lot. In particular CM-II (corrosion meter) is used to measure the polarization resistance, but has some disadvantages. Embedded mini-sensor has been developed in order to overcome these disadvantages. In this study, measurement of corrosion by using the mini-sensor is compared with the measured results by CM-II to verify the validity of the newly developed mini senor. Results show that there are agreement in trends of the parameters measured and as such the developed mini sensor has a promising start to be used.


Author(s):  
Nour Eldeen Abo Nassar

Reinforced concrete (RC) structures have the ability to be extremely durable and able to withstand a diversity of different environmental cases. However, failure in these structures still happens due to precocious reinforcement erosion. If steel reinforcement corrodes in concrete structures, this leads to a decrease in the lifetime and durability of these structures, which cause early failure of the structures, costing significantly to inspect and maintain the deteriorating structures. Then, monitoring of reinforcement corrosion is of great importance to prevent early failure of structures. Structures corrosion can be decreased through correct monitoring and taking appropriate control measures in the appropriate period of time. When steel bars corrode, the formation of rust causes the concrete to be separated from the steel and then thereafter. In case this issue is not addressed, it may influence the entire structure. This paper attempts to present a comprehensive review of corrosion of rebar in RC structures, its mechanisms, monitoring and prevention.


2019 ◽  
pp. 185-190
Author(s):  
Yu. L. Kuzmin ◽  
O. A. Stavitsky

The paper analyzes ways to ensure long service life (up to 50 years) of reinforced concrete marine structures. It has been established that durability and maintenance-free operation of floating and coastal offshore structures for 50 and more years depend on corrosion of steel reinforcement which could be avoided by applying electrochemical protection. The parameters of electrochemical protection against corrosion of steel fittings are given.


2015 ◽  
Vol 1 (2) ◽  
pp. 42
Author(s):  
E. Moreno ◽  
M. I. Prieto ◽  
M. N. González ◽  
N. Llauradó

ResumenLa carbonatación del hormigón o la intrusión de cloruros en suficiente cantidad para alcanzar el nivel de las barras, es desencadenante de la corrosión de la armadura. Uno de los efectos más significativos de la corrosión del acero de refuerzo en estructuras de hormigón armado es la disminución de las propiedades relacionadas con la ductilidad del acero. El reforzamiento tiene un efecto decisivo en la ductilidad global de las estructuras de hormigón armado. Se utilizan diferentes códigos para clasificar el tipo de acero en función de su ductilidad usando los valores mínimos de varios parámetros. El uso de indicadores de ductilidad asociados a diferentes propiedades puede ser ventajoso en muchas ocasiones. Se considera necesario para definir la ductilidad por medio de un solo parámetro que tiene en cuenta los valores de resistencia y deformación simultáneamente. Hay una serie de criterios para definir la ductilidad del acero mediante un único parámetro. El presente estudio experimental se ocupa de la variación en la ductilidad de las barras de acero embebido en hormigón cuando se expone a la corrosión acelerada. Este trabajo analiza la idoneidad de un nuevo indicador de la ductilidad utilizado en barras corroídas. AbstractThe carbonation of concrete or the chlorides ingress in such quantity to reach the level of bars is triggers of reinforcement corrosion. One of the most significant effects of reinforcing steel corrosion on reinforced concrete structures is the decline in the ductility-related properties of the steel. Reinforcement ductility has a decisive effect on the overall ductility of reinforced concrete structures. Different Codes classify the type of steel depending on their ductility defined by the minimum values of several parameters. Using indicators of ductility associating different properties can be advantageous on many occasions. It is considered necessary to define the ductility by means of a single parameter that considers strength values and deformation simultaneously. There are a number of criteria for defining steel ductility by a single parameter. The present experimental study addresses the variation in the ductility of concrete-embedded steel bars when exposed to accelerated corrosion. This paper analyzes the suitability of a new indicator of ductility used in corroded bars.


2021 ◽  
Author(s):  
Sergey Leonovich ◽  
Evgeniy Shalyy ◽  
Elena Polonina ◽  
Elena Sadovskaya ◽  
Lev Kim ◽  
...  

Section I of the monograph is devoted to an urgent problem - forecasting the durability of port reinforced concrete structures, the destruction of which is associated with corrosion of steel reinforcement caused by chloride aggression and carbonation of concrete. The analysis of models for calculating the service life of structures and experimental data is carried out, the life cycles for the main degradation processes in concrete and reinforcement, the periods of initiation and propagation of corrosion are considered, the influence of environmental factors (temperature, humidity) and the quality of concrete (In/C, cement consumption, diffusion coefficient) on the kinetics of chloride penetration and the movement of the carbonation front is taken into account. Probabilistic models of basic variables are considered, the limiting states of port reinforced concrete structures for the durability of reinforced concrete structures based on the reliability coefficient for service life are formulated. Sections II and III describe modern methods of restoration and restoration of reinforced concrete port structures subjected to corrosion destruction using nanofibrobeton. The concept of multilevel reinforcement has been implemented. Methods of experimental fracture mechanics were used to evaluate the joint work of exploited concrete and reinforcement nanofibre concrete. It is intended for scientific and engineering staff of universities, research and design organizations.


Author(s):  
Сергей Леонович ◽  
Sergey Leonovich ◽  
Валентин Доркин ◽  
Valentin Dorkin ◽  
Оксана Чернякевич ◽  
...  

The monograph is devoted to the prediction of the longevity of reinforced concrete structures, the destruction of which is associated with corrosion of steel reinforcement caused by chloride aggression or concrete carbonation. On the basis of a comprehensive analysis of models for calculating the service life of structures and experimental data, preference is given to the mathematical model Dura Crete. Life cycles for the main degradation processes in concrete and reinforcement, periods of initiation and propagation of corrosion are considered. Particular attention is paid to the influence of environmental factors and the quality of concrete on the kinetics of chloride penetration and movement of the carbonization front. Formulated limit state design reinforced concrete durability in chloride attacks and carbonation. The basic provisions of the method of calculating the durability of reinforced concrete structures, based on the use of the reliability coefficient for the service life. The practical assessment of service life of reinforced concrete elements taking into account stochastic processes in concrete and reinforcement is made. Verification of the model reliability is performed. For all those interested in the issues of building materials and processes occurring in them.


Sign in / Sign up

Export Citation Format

Share Document