scholarly journals Propuesta de un nuevo indicador para definir la ductilidad aplicada a la corrosión del acero de refuerzo en estructuras de hormigón = Proposal of a new indicator to define ductility applied to corroded steel reinforcement on concrete structures

2015 ◽  
Vol 1 (2) ◽  
pp. 42
Author(s):  
E. Moreno ◽  
M. I. Prieto ◽  
M. N. González ◽  
N. Llauradó

ResumenLa carbonatación del hormigón o la intrusión de cloruros en suficiente cantidad para alcanzar el nivel de las barras, es desencadenante de la corrosión de la armadura. Uno de los efectos más significativos de la corrosión del acero de refuerzo en estructuras de hormigón armado es la disminución de las propiedades relacionadas con la ductilidad del acero. El reforzamiento tiene un efecto decisivo en la ductilidad global de las estructuras de hormigón armado. Se utilizan diferentes códigos para clasificar el tipo de acero en función de su ductilidad usando los valores mínimos de varios parámetros. El uso de indicadores de ductilidad asociados a diferentes propiedades puede ser ventajoso en muchas ocasiones. Se considera necesario para definir la ductilidad por medio de un solo parámetro que tiene en cuenta los valores de resistencia y deformación simultáneamente. Hay una serie de criterios para definir la ductilidad del acero mediante un único parámetro. El presente estudio experimental se ocupa de la variación en la ductilidad de las barras de acero embebido en hormigón cuando se expone a la corrosión acelerada. Este trabajo analiza la idoneidad de un nuevo indicador de la ductilidad utilizado en barras corroídas. AbstractThe carbonation of concrete or the chlorides ingress in such quantity to reach the level of bars is triggers of reinforcement corrosion. One of the most significant effects of reinforcing steel corrosion on reinforced concrete structures is the decline in the ductility-related properties of the steel. Reinforcement ductility has a decisive effect on the overall ductility of reinforced concrete structures. Different Codes classify the type of steel depending on their ductility defined by the minimum values of several parameters. Using indicators of ductility associating different properties can be advantageous on many occasions. It is considered necessary to define the ductility by means of a single parameter that considers strength values and deformation simultaneously. There are a number of criteria for defining steel ductility by a single parameter. The present experimental study addresses the variation in the ductility of concrete-embedded steel bars when exposed to accelerated corrosion. This paper analyzes the suitability of a new indicator of ductility used in corroded bars.

Author(s):  
Mohamed A. Ismail ◽  
Han-Seung Lee ◽  
Mohd Warid Hussin

Corrosion of steel reinforcement embedded in concrete is one of the main causes of degradation of reinforced concrete structures. Degradation occurs in reinforced concrete structures from corrosion caused by the Chloride ingress into concrete. That degradation has a severe impact on the structure in terms of maintenance and rehabilitation costs. Therefore, early detection of reinforcement corrosion is important for efficient maintenance, repair and planning. Meanwhile, the evaluation of the corrosion of reinforcement by non-destructive measurements have been used a lot. In particular CM-II (corrosion meter) is used to measure the polarization resistance, but has some disadvantages. Embedded mini-sensor has been developed in order to overcome these disadvantages. In this study, measurement of corrosion by using the mini-sensor is compared with the measured results by CM-II to verify the validity of the newly developed mini senor. Results show that there are agreement in trends of the parameters measured and as such the developed mini sensor has a promising start to be used.


Author(s):  
Nour Eldeen Abo Nassar

Reinforced concrete (RC) structures have the ability to be extremely durable and able to withstand a diversity of different environmental cases. However, failure in these structures still happens due to precocious reinforcement erosion. If steel reinforcement corrodes in concrete structures, this leads to a decrease in the lifetime and durability of these structures, which cause early failure of the structures, costing significantly to inspect and maintain the deteriorating structures. Then, monitoring of reinforcement corrosion is of great importance to prevent early failure of structures. Structures corrosion can be decreased through correct monitoring and taking appropriate control measures in the appropriate period of time. When steel bars corrode, the formation of rust causes the concrete to be separated from the steel and then thereafter. In case this issue is not addressed, it may influence the entire structure. This paper attempts to present a comprehensive review of corrosion of rebar in RC structures, its mechanisms, monitoring and prevention.


2019 ◽  
pp. 185-190
Author(s):  
Yu. L. Kuzmin ◽  
O. A. Stavitsky

The paper analyzes ways to ensure long service life (up to 50 years) of reinforced concrete marine structures. It has been established that durability and maintenance-free operation of floating and coastal offshore structures for 50 and more years depend on corrosion of steel reinforcement which could be avoided by applying electrochemical protection. The parameters of electrochemical protection against corrosion of steel fittings are given.


2013 ◽  
Vol 438-439 ◽  
pp. 784-788
Author(s):  
Jin Wu

Corrosion of steel bars has a serious influence on durability and safety of reinforced concrete structures, which should be effectively monitored for the maintenance of reinforced concrete structures. This paper reviews several main techniques firstly, and presents the ongoing work at Nanjing University of Aeronautics and Astronautics to develop sensors to monitor the corrosion of reinforcement in concrete. It is hoped that the paper will be helpful to the field engineers and laboratory researchers who are monitoring and studying the corrosion of reinforcement in concrete structures.


2008 ◽  
Vol 587-588 ◽  
pp. 677-681 ◽  
Author(s):  
E.V. Pereira ◽  
R.B. Figueira ◽  
Manuela M. Salta ◽  
I.T.E. Fonseca

In this work the performance of two surface treatments and the efficiency of a corrosion inhibitor were evaluated, in the control of steel corrosion in concrete induced by chlorides, through measurements of galvanic current and polarization resistance applied to embedded sensors fixed in existing concrete using different methodologies. From the results obtained the use of the different embedded sensors in the measurement of corrosion rate is discussed aiming the development of new systems for permanent evaluation of the on site performance of products for repairing reinforced concrete structures affected by reinforcement corrosion.


Author(s):  
Esther Moreno ◽  
Alfonso Cobo ◽  
Maria Nieves Gonzalez

Purpose One of the meaningful effects of concrete reinforcement steel corrosion on concrete structures is the decrease of mechanical properties, specifically the ductility of steel. The term ductility of steel refers to a group of properties which determine the reinforced concrete structures and it is necessary to take this property into account for the recalculation of structures that have been already corroded until the point to condition in many occasions the analysis methodology. Design/methodology/approach This research studies the variation on ductility of concrete embedded steels bars after going through an accelerated corrosion process. Tensile strength of high ductility reinforcements with different corrosion levels has been tested. Ductility was studied in terms of ultimate tensile strength, yield strength, ultimate strain, energy density of deformation and “equivalent steel” criterion. It also makes some considerations about what is the best methodology of structural analysis according to the obtained results. Findings Based on the obtained results, conclusions are established that determine whether the corroded steel satisfy the requirements of different codes in order to identify them as “steels with special characteristics of ductility” assessing in each case the possibility of reallocating solicitations in structures which might need to be repaired. Originality/value The analysis of existing RC structures should address moment redistribution to be able to compare ultimate strength values, rather than to a single value obtained with elastic linear models to a range of values centred on the elastic and linear values obtained and defining an interval equal to double the value of the maximum redistribution capacity. This greatly enhances the possibility of “saving” a standing structure. In ductile structures the effect of actions can be distributed. The ascertainment of corroded reinforcement ductility variation is of key importance in structural re‐engineering and recalculation of structures. The research developed in this article is motivated by the need to contribute to knowledge of the behavior of reinforced concrete structures with reinforcement damaged.


2015 ◽  
Vol 1111 ◽  
pp. 187-192
Author(s):  
Corina Sosdean ◽  
Liviu Marsavina ◽  
Geert de Schutter

Reinforced concrete (RC) became one of the most widely used modern building materials. In the last decades a great interest has been shown in studying reinforcement corrosion as it became one of the main factors of degradation and loss of structural integrity of RC structures. The degradation process is accelerated in the case of RC structures situated in aggressive environments like marine environments or subjected to de-icing salts. In this paper it is shown how steel corrosion of the embedded rebars occurs and how this affects the service life of reinforced concrete structures. Also, an experimental study regarding the combined effect of carbonation and chloride ingress was realized. Samples with and without rebars were drilled from a RC slab which was stored in the laboratory for two years. Non-steady state migration tests were realized in order to determine the chloride profile, while the carbonation depth was measured using the colorimetric method based on phenolphthalein spraying. It was concluded that carbonation has a significant effect on chloride ingress, increasing it.


Sign in / Sign up

Export Citation Format

Share Document