Correlation Test between Chloride Diffusion Coefficient and Microcosmic Pore Structure of Mineral Admixture Concrete

2013 ◽  
Vol 438-439 ◽  
pp. 81-86
Author(s):  
Yun Dong Zhu ◽  
Yang Li ◽  
Zhuo Zhao

Cube crushing strength, resistance to chloride penetration and gas adsorption analysis of mineral admixture concrete are tested to analyze the effect of raw material on chloride diffusion coefficient and its regression relationship with concrete microcosmic pore structure index. Test results show that chloride diffusion coefficient at different age increased with the increase of water-binding material ratio, decreased with the increase of cement dosage and both appeared a good nonlinear regression relationship. Chloride diffusion coefficient at different age increased with the increase of concrete microcosmic pore structure index. 56d chloride diffusion coefficient has a good linear correlation with microcosmic pore structure index, and 84d chloride diffusion coefficient has a good nonlinear regression relationship with microcosmic pore structure index.

2013 ◽  
Vol 438-439 ◽  
pp. 75-80 ◽  
Author(s):  
Zhuo Zhao ◽  
Chao Wei Du ◽  
Lei Shen

Cube crushing strength, resistivity and gas adsorption analysis of mineral admixture concrete are tested to analysis the effect of raw material on resistivity and its regression relationship with concrete microcosmic pore structure index. Test results show that concrete resistivity at different age increases with the increase of cementitious material and cement dosage, and both has a good nonlinear regression relationship. Concrete resistivity at different age decreases with the increase of 56d HK method cumulative pore volume, 7d and 14d resistivity has a good linear correlation relationship with 56d HK method cumulative pore volume. 28d and 56d resistivity has a good nonlinear regression relationship with 56d HK method cumulative pore volume. Concrete resistivity at different age decreases with the increase of 56d BJH method cumulative adsorption pore radius, and both has a good nonlinear regression relationship.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ruidong Wu ◽  
Juanhong Liu

In order to study the performance of concrete with compound admixture of iron tailings and slag powder under low cement clinker system, the mixture ratio of different iron tailings powder and slag powder was designed to prepare C30 and C50 concrete. The workability, strength, carbonation depth, chloride diffusion coefficient, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) of concrete were measured, respectively. The test results show that iron tailings powder is beneficial to improve the workability, and the strength of concrete decreases with the increase of iron tailings powder content, while the carbonation depth and chloride diffusion coefficient increase with the increase of iron tailings powder content. Under low cement clinker system, the iron tailings powder should not be used alone (below 70% of mineral admixture). When the ratio of iron tailings to slag powder is 1 : 1, the strength, carbonation depth, chloride ion permeation coefficient, and the microstructure of concrete are roughly the same to that of concrete with single slag powder. So, the iron tailings powder can replace S95 grade slag powder in the same quantity. Iron tailings powder does not take part in hydration reaction, but it can improve particle gradation, reach close accumulation, and increase the quantity of central grains.


2012 ◽  
Vol 174-177 ◽  
pp. 1419-1423
Author(s):  
Jian Bo Xiong ◽  
Peng Ping Li ◽  
Sheng Nian Wang

In China, manufactured sand has been widely used as fine aggregate in concrete. Therefore, it is necessary to investigate the effect of manufactured sand on durability of concrete. This research studies the influence of stone dust content in manufactured sand on resisting chloride penetration in marine concrete by strength and other physical mechanical tests, XRD, TGA and pore structure analysis. Test results have shown that the chloride diffusion coefficient increased with increasing the stone dust content in manufactured sand when the stone dust content increasing from 3% to 13%. The stone dust in fine aggregate was participated in hydration procedure of cementitious, which will promote the hydration degree of cementitious and increase the chloride binding capacity of hydration product. The influence of stone dust in fine aggregate on chloride diffusion coefficient were the combined effects of concrete pore structure and cementitious hydration products, and the porosity and pore size distribution were the main factors that influence the changes of diffusion coefficient.


2013 ◽  
Vol 690-693 ◽  
pp. 835-838 ◽  
Author(s):  
Yan Jun Hu ◽  
Yan Liang Du

In this paper, the effect of pore structure on the chloride ions ingress into concrete was investigated. The most probable diameter was measured by Mercury intrusion porosimetry (MIP) and the total porosity was measured by evaporative water method (EWM). The results indicate that the most probable diameter by MIP has better linear relationship with chloride diffusion coefficient than the total porosity by EWM, the most probable diameter has significant influence on chloride diffusivity, and the smaller most probable diameter will lead to higher chloride penetration resistance.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 240
Author(s):  
Jianlan Chen ◽  
Jiandong Wang ◽  
Rui He ◽  
Huaizhu Shu ◽  
Chuanqing Fu

This study investigated the effective chloride diffusion coefficient of cement mortar with different water-to-cement ratio (w/c) under electrical accelerated migration measurement. The cumulative chloride concentration in anode cell solution and the cumulative chloride concentration drop in the cathode cell solution was measured by RCT measurement and the results were further used to calculate the chloride diffusion coefficient by Nordtest Build 355 method and Truc method. The influence of w/c on cement mortar’s chloride coefficient was investigated and the chloride diffusion coefficient under different determination methods were compared with other researchers’ work, a good consistency between this work’s results and literatures’ results was obtained. The results indicated that the increased w/c of cement mortar samples will have a higher chloride diffusion coefficient. The cumulative chloride concentration drop in the cathode cell solution will have deviation in early stage measurement (before 60 h) which will result in overestimation of the effective chloride diffusion coefficient.


Sign in / Sign up

Export Citation Format

Share Document