A Lattice Hydrodynamic Model Considering the Following Lattice and its Stability Analysis

2013 ◽  
Vol 444-445 ◽  
pp. 293-298
Author(s):  
Xiang Lin Han ◽  
Cheng Ouyang

Incorporating the ITS in traffic flow, two lattice hydrodynamic models considering the following lattice are proposed to study the influence of the following lattice on traffic flow stability. The results from the linear stability theory show that considering the following lattice could lead to the improvement of the traffic flow stability. The modified Korteweg-de Vries equations (the mKdV equation, for short) near the critical point are derived by using the nonlinear perturbation method to show that the traffic jam could be described by the kink-antikink soliton solutions for the mKdV equations.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jin Wan ◽  
Xin Huang ◽  
Wenzhi Qin ◽  
Xiuge Gu ◽  
Min Zhao

In order to prevent the occurrence of traffic accidents, drivers always focus on the running conditions of the preceding and rear vehicles to change their driving behavior. By taking into the “backward-looking” effect and the driver’s anticipation effect of flux difference consideration at the same time, a novel two-lane lattice hydrodynamic model is proposed to reveal driving characteristics. The corresponding stability conditions are derived through a linear stability analysis. Then, the nonlinear theory is also applied to derive the mKdV equation describing traffic congestion near the critical point. Linear and nonlinear analyses of the proposed model show that how the “backward-looking” effect and the driver’s anticipation behavior comprehensively affect the traffic flow stability. The results show that the positive constant γ , the driver’s anticipation time τ , and the sensitivity coefficient p play significant roles in the improvement of traffic flow stability and the alleviation of the traffic congestion. Furthermore, the effectiveness of linear stability analysis and nonlinear analysis results is demonstrated by numerical simulations.


2008 ◽  
Vol 19 (07) ◽  
pp. 1113-1127 ◽  
Author(s):  
XINGLI LI ◽  
ZHIPENG LI ◽  
XIANGLIN HAN ◽  
SHIQIANG DAI

Two extended cooperative driving lattice hydrodynamic models are proposed by incorporating the intelligent transportation system and the backward-looking effect in traffic flow under certain conditions. They are the lattice versions of the hydrodynamic model of traffic: one (model A) is described by the differential-difference equation where time is a continuous variable and space is a discrete variable, and the other (model B) is the difference-difference equation in which both time and space variables are discrete. In light of the real traffic situations, the appropriate forward and backward optimal velocity functions are selected, respectively. Then the stability conditions for the two models are investigated with the linear stability theory and it is found that the new consideration leads to the improvement of the stability of traffic flow. The modified Korteweg-de Vries equations (the mKdV equation, for short) near the critical point are derived by using the nonlinear perturbation method to show that the traffic jam could be described by the kink-antikink soliton solutions for the mKdV equations. Moreover, the anisotropy of traffic flow is further discussed through examining the negative propagation velocity as the effect of following vehicle is involved.


2019 ◽  
Vol 33 (19) ◽  
pp. 1950223 ◽  
Author(s):  
Xinyue Qi ◽  
Rongjun Cheng ◽  
Hongxia Ge

In this paper, a new two-lane lattice hydrodynamic model is presented by accounting for the “backward looking” effect and the relative flow information. Linear analysis is applied to deduce the linear stability condition. With this method, we can demonstrate that “backward looking” and relative flow information have great positive significance in improving traffic flow stability. Nonlinear analysis is performed to derive the mKdV equation, which can represent transmission characteristic of density waves. The results achieved by the numerical simulation are consistent with theoretical analytical results. Numerical results indicate that both “backward looking” effect and relative flow information are helpful to heighten the traffic flow stability efficiently in two-lane traffic model.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050365
Author(s):  
Siyuan Chen ◽  
Changxi Ma ◽  
Jinchou Gong

At present, drivers can rely on road communication technology to obtain the current traffic status information, and the development of intelligent transportation makes self-driving possible. In this paper, considering the mixed traffic flow with self-driving vehicles and the taillight effect, a new macro-two-lane lattice model is established. Combined with the concept of critical density, the judgment conditions for vehicles to take braking measures are given. Based on the linear analysis, the stability conditions of the new model are obtained, and the mKdV equation describing the evolution mechanism of density waves is derived through the nonlinear stability analysis. Finally, with the help of numerical simulation, the phase diagram and kink–anti-kink waveform of neutral stability conditions are obtained, and the effects of different parameters of the model on traffic flow stability are analyzed. The results show that the braking probability, the proportion of self-driving vehicles and the critical density have significant effects on the traffic flow stability. Considering taillight effect and increasing the mixing ratio of self-driving vehicles can effectively enhance the stability of traffic flow, but a larger critical density will destroy the stability of traffic flow.


2013 ◽  
Vol 24 (07) ◽  
pp. 1350048 ◽  
Author(s):  
GUANGHAN PENG

In this paper, a new two-lane lattice model of traffic flow is proposed with the consideration of multi-anticipation effect. The linear stability condition of two-lane traffic is derived with the multi-anticipation effect term by linear stability analysis, which shows that the stable region enlarges with the number of multi-anticipation sites increasing. Nonlinear analysis near the critical point is carried out to obtain kink–antikink soliton solution of the mKdV equation with the multi-anticipation effect term. Numerical simulation also shows that the multi-anticipation effect can suppress the traffic jam efficiently with lane changing in two-lane system.


2020 ◽  
Vol 37 (8) ◽  
pp. 2939-2955 ◽  
Author(s):  
Xinyue Qi ◽  
Rongjun Cheng ◽  
Hongxia Ge

Purpose This study aims to consider the influence of density difference integral and relative flow difference on traffic flow, a novel two-lane lattice hydrodynamic model is proposed. The stability criterion for the new model is obtained through the linear analysis method. Design/methodology/approach The modified Korteweg de Vries (KdV) (mKdV) equation is derived to describe the characteristic of traffic jams near the critical point. Numerical simulations are carried out to explore how density difference integral and relative flow difference influence traffic stability. Numerical and analytical results demonstrate that traffic congestions can be effectively relieved considering density difference integral and relative flow difference. Findings The traffic congestions can be effectively relieved considering density difference integral and relative flow difference. Originality/value Novel two-lane lattice hydrodynamic model is presented considering density difference integral and relative flow difference. Applying the linear stability theory, the new model’s linear stability is obtained. Through nonlinear analysis, the mKdV equation is derived. Numerical results demonstrate that the traffic flow stability can be efficiently improved by the effect of density difference integral and relative flow difference.


2019 ◽  
Vol 37 (5) ◽  
pp. 1645-1661 ◽  
Author(s):  
Lixiang Li ◽  
Hongxia Ge ◽  
Rongjun Cheng

Purpose This paper aims to put forward an extended lattice hydrodynamic model, explore its effects on alleviating traffic congestion and provide theoretical basis for traffic management departments and traffic engineering implementation departments. Design/methodology/approach The control method is applied to study the stability of the new model. Through nonlinear analysis, the mKdV equation representing kink-antikink soliton is acquired. Findings The predictive effect and the control signal can enhance the traffic flow stability and reduce the energy consumption. Originality/value The predictive effect and feedback control are first considered in lattice hydrodynamic model simultaneously. Numerical simulations demonstrate that these two factors can enhance the traffic flow stability.


2014 ◽  
Vol 28 (11) ◽  
pp. 1450091 ◽  
Author(s):  
D. H. Sun ◽  
M. Zhang ◽  
T. Chuan

Kerner and Konhäuser study moving jam dynamics first discovered in 1993 in Ref. 1. In light of their previous work, a new lattice hydrodynamic model is presented with consideration of the effect of multiple optimal current difference. To investigate the influences of new consideration on traffic jams, the linear stability analysis of the new model is conducted by employing the linear stability theory. Theoretical analysis result shows that the new consideration can stabilize traffic flow. By means of nonlinear analysis method, a modified Korteweg–deVries (mKdV) equation near the critical point is constructed and solved. The propagation behavior of traffic jam can thus be described by the kink–antikink soliton solution for the mKdV equation. Numerical simulation result shows that the effect of the multiple optimal current differences can suppress the emergence of traffic jams and the result is in good agreement with the analytical results.


Sign in / Sign up

Export Citation Format

Share Document