Effect of Dispersed Phase Viscosity on Emulsification in Turbulence Flow

2013 ◽  
Vol 446-447 ◽  
pp. 571-575 ◽  
Author(s):  
Chen Wei Liu ◽  
Ming Zhong Li

Systematic experimental study has been performed to examine the effects of dispersed phase viscosity on emulsification in turbulence flow. It is found that the volume drop size distributions widen as dispersed phase viscosity increased; at lower dispersed phase viscosity, both Sauter mean diameter and the maximum stable diameter increase with the viscosity, while at higher dispersed phase viscosity, Sauter mean diameter and the maximum stable diameter decreasing and increasing, respectively. It has also been found that linear relation between the Sauter mean diameter and the maximum stable drop diameter is still valid for the emulsions which show a bimodal volume distribution, and the proportional constant decreases as dispersed phase viscosity increases.

Author(s):  
Sherry Amedorme

This experimental study undertakes the measurements of droplet Sauter Mean Diameter (SMD) at different axial distances for the hollow-cone nozzle and different radial distances from the spray centreline using a laser-diffraction-based drop size analyser in order to validate atomization model. The study also investigates the influence of injection pressure and the evaluation of two exit orifice diameters on the Sauter Mean Diameter (SMD). The drop size distributions along the nozzle centreline as well as the radial drop distributions from spray centreline are also evaluated. To enhance the physics of liquid sheet instability and liquid film breakup mechanisms, visualization of liquid film breakup as a function of injection pressure was carried out. The results show that mean droplet size (SMD) increases in the axial distance on the spray centreline but decreases with an increasing injection pressure on the spray centreline. It was observed that larger sized drops occupy the spray periphery compared to those occupying the spray core. For the nozzle exit orifice diameters of 3.5 mm and 1.5 mm, the results show that the small nozzle exhibits smaller SMDs than the bigger nozzle and the break-up lengths are different for the two nozzles. The drop size distributions at radial positions showed an increase in droplet formation through the spray downstream distances and become more uniform. The visualisation of the spray was carried out using high-speed camera and it was noted that a well-defined hollow-cone spray was captured and that the spray angle increases with the injection pressure but reduces with the liquid film length.


2013 ◽  
Vol 644 ◽  
pp. 203-206
Author(s):  
Hai Liang Cai ◽  
Bi Feng Song ◽  
Yang Pei ◽  
Shuai Shi

For making sure the dry bay ignition and fire, it’s necessary to calculate the number and the sizes of the droplets and determine the mass flow rate of the fuel induced by high-speed impact and penetration of a rigid projectile into fuel tank. An analytical model is founded and the method for calculating the initial leaking velocity of the fuel is determined. It gives the equation for calculating the drop size distributions of fuel and the Sauter mean diameter (SMD) of droplets, through the Maximum Entropy Theory and the conservation for mass. Using the Harmon’s equation for SMD,the fuel droplets SMD can be calculated. Results shows that the initial leaking velocity of the fuel is about linearly increasing with the velocity of the projectile, the SMD of fuel droplets increases with the hole size of the fuel tank which induced by the penetration of the projectile and linearly decreases with the velocity of the projectile. The results can be used for the ignition and fire analysis of the dry bay adjacent to fuel tanks.


2015 ◽  
Vol 72 (4) ◽  
pp. 1386-1397 ◽  
Author(s):  
A. R. Jameson ◽  
M. L. Larsen ◽  
A. B. Kostinski

Abstract Past studies of the variability of drop size distributions (DSDs) have used moments of the distribution such as the mass-weighted mean drop size as proxies for the entire size distribution. In this study, however, the authors separate the total number of drops Nt from the DSD leaving the probability size distributions (PSDs); that is, DSD = Nt × PSD. The variability of the PSDs are then considered using the frequencies of size [P(D)] values at each different drop diameter P(PD | D) over an ensemble of observations collected using a network of 21 optical disdrometers. The relative dispersions RD of P(PD | D) over all the drop diameters are used as a measure of PSD variability. An intrinsic PSD is defined as an average over one or more instruments excluding zero drop counts. It is found that variability associated with an intrinsic PSD fails to characterize its true variability over an area. It is also shown that this variability is not due to sampling limitations but rather originates for physical reasons. Furthermore, this variability increases with the expansion of the network size and with increasing drop diameter. A physical explanation is that the network acts to integrate the Fourier transform of the spatial correlation function from smaller toward larger wavelengths as the network size increases so that the contributions to the variance by all spatial wavelengths being sampled also increases. Consequently, RD and, hence, PSD variability will increase as the size of the area increases.


2020 ◽  
Vol 4 (1) ◽  
pp. 13
Author(s):  
Merhala Thurai ◽  
Viswanathan Bringi ◽  
David Wolff ◽  
David Marks ◽  
Charanjit Pabla

Stratiform and convective rain are associated with different microphysical processes and generally produce drop-size distributions (DSDs) with different characteristics. A previous study, using data from a tropical coastal location found that the two rain types could be separated in the NW–Dm space, where Dm is the mass-weighted mean diameter and NW is the normalized intercept parameter. The separation method has also been tested using data and observations from a midlatitude continental location with semiarid climate, and a subtropical continental location. In this paper, we investigate the same separation technique using data and observations from a midlatitude coastal region. Three-minute DSDs from disdrometer measurements were used for the NW versus Dm based classification and were compared with simultaneous observations from an S-band polarimetric radar 38 km away from the disdrometer site. Specifically, range-height indicator (RHI) scans over the disdrometer were used for confirmation. The results showed that there was no need to modify the separation criteria from previous studies. Scattering calculations using the three-minute DSDs were used to derive retrieval equations for Nw and Dm for the S-band radar and applied to the RHI scans to identify convective and stratiform rain regions. Two events are shown as illustrative examples.


2012 ◽  
Vol 69 (5) ◽  
pp. 1534-1546 ◽  
Author(s):  
Olivier P. Prat ◽  
Ana P. Barros ◽  
Firat Y. Testik

Abstract The objective of this study is to evaluate the impact of a new parameterization of drop–drop collision outcomes based on the relationship between Weber number and drop diameter ratios on the dynamical simulation of raindrop size distributions. Results of the simulations with the new parameterization are compared with those of the classical parameterizations. Comparison with previous results indicates on average an increase of 70% in the drop number concentration and a 15% decrease in rain intensity for the equilibrium drop size distribution (DSD). Furthermore, the drop bounce process is parameterized as a function of drop size based on laboratory experiments for the first time in a microphysical model. Numerical results indicate that drop bounce has a strong influence on the equilibrium DSD, in particular for very small drops (<0.5 mm), leading to an increase of up to 150% in the small drop number concentration (left-hand side of the DSD) when compared to previous modeling results without accounting for bounce effects.


2017 ◽  
Author(s):  
◽  
Jordan A. Wendt

There have been many studies on the evaluations of drop-size distributions and the parameters that affect these distributions, however, few, if any, have directly compared the relationship between the radar-derived parameters and those parameters that are disdrometer-derived. This study focuses on many different features of thunderstorms that changes the structure of the drop-size distribution (DSD) including: Horizontal reflectivity (ZH), differential reflectivity (ZDR), median drop diameter (D0), the shape parameter of the gamma-distributed DSD ([mu]), and the slope parameter of the gamma-distributed DSD (lambda). This work compares data collected by two disdrometers (OTT PARSIVEL and the Campbell Scientific Present Weather Sensor 100) against DSD parameters derived from dual-polarization radar observations. Using the Warning Decision Support System-Integrated Information (WDSS-II), radar data was merged at 1-km resolution to account for the movement of the precipitation systems before comparing to the 10-minute disdrometer data intervals. It was found that to accurately estimate DSDs from the perspective of using a weather radar, a larger precipitation event is needed. At the beginning and end of a precipitation event the difference between the radar retrieved values of D0, [mu], and [lambda] and those sampled by the disdrometer were much greater than during the middle of the event. Throughout the majority of the cases, the radar-derived reflectivity values were consistently lower than those collected by the disdrometers.


Sign in / Sign up

Export Citation Format

Share Document