Individual Pitch Control for Load Reduction Based on Norm Theory

2013 ◽  
Vol 448-453 ◽  
pp. 1879-1883
Author(s):  
Ying Deng ◽  
Dan Zhang ◽  
Feng Zhou ◽  
De Tian

As the capacity of wind turbine increases, unsteady blade loads and performance caused by asymmetrical effects like turbulence, wind shear and tower shadow lead to fatigue loads which seriously affect wind turbine life cycle. This paper focused on wind turbine fatigue load response characteristics, built the multiple input multiple output linearized matrix model, introduced individual pitch control algorithm for optimized disturbance control based on norm theory. Modeling, simulation and verification of the control algorithm are conducted in Matlab. The investigation is conducted based on a 2MW doubly-fed wind turbine. By comparing the results of wind turbine deflection rate and angle deflection rate to collective pitch control method, it shows the individual pitch control algorithm can significantly reduce wind turbine fatigue load, and the control effect is superior to traditional control algorithm.

due to the breeze beat boom, wind shear and tower shadow affects, community related breeze generators are the wellsprings of power modifications which additionally can also supply shimmer over the span of regular development. This paper proposes a model of a MW-set up variable-pace wind turbine with a doubly continued confirmation generator to research the blaze transmission and equalization problems. To facilitate the flashes we were the usage of a man or female make commitments manage contraption the earlier days. on this paper, a moved pitch territory control method relying on the smooth cause is proposed for the variable-rhythm wind turbine systems, in which the generator pace slip-up and exchange speed blunder are utilized as manage enter elements for the cushy cause controller (FLC). The pitch vicinity reference is made through manner of the use of the FLC, that could capture up at the nonlinear regular for the pitch element to the breeze pace. This paper offers head alternate of wind energy, wind turbine linearization and dynamic displaying are settled. The feathery reason controller is carried out for trade draining edge of wind turbine and customary energy might be collect. The square represent of proposed pitch oversee which consolidates pitch controller, actuator version and turbine linearized displayed with the nice valuable asset of the usage of Matlab/Simulink programming.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Matthew A. Lackner ◽  
Gijs A. M. van Kuik

Reducing the loads experienced by wind turbine rotor blades can lower the cost of energy of wind turbines. “Smart rotor control” concepts have emerged as a solution to reduce fatigue loads on wind turbines. In this approach, aerodynamic load control devices are distributed along the span of the blade, and through a combination of sensing, control, and actuation, these devices dynamically control the blade loads. While smart rotor control approaches are primarily focused on fatigue load reductions, extreme loads on the blades may also be critical in determining the lifetime of components, and the ability to reduce these loads as well would be a welcome property of any smart rotor control approach. This research investigates the extreme load reduction potential of smart rotor control devices, namely, trailing edge flaps, in the operation of a 5 MW wind turbine. The controller utilized in these simulations is designed explicitly for fatigue load reductions; nevertheless its effectiveness during extreme loads is assessed. Simple step functions in the wind are used to approximate gusts and investigate the performance of two load reduction methods: individual flap control and individual pitch control. Both local and global gusts are simulated. The results yield important insight into the control approach that is utilized, and also into the differences between using individual pitch control and trailing edge flaps for extreme load reductions. Finally, the limitation of the assumption of quasisteady aerodynamic behavior is assessed.


2016 ◽  
Vol 11 (8) ◽  
pp. 1121-1128 ◽  
Author(s):  
Raja Muhammad Imran ◽  
Dil Muhammad Akbar Hussain ◽  
Mohsen Soltani ◽  
Raja Muhammad Rafaq

2021 ◽  
Vol 170 ◽  
pp. 1245-1256
Author(s):  
Daniel Ossmann ◽  
Peter Seiler ◽  
Christopher Milliren ◽  
Alan Danker

Author(s):  
Ji Gao ◽  
Diming Lou ◽  
Tong Zhang ◽  
Liang Fang ◽  
Yunhua Zhang

The Corun hybrid system (CHS) is a deeply coupled multiple-input–multiple-output (MIMO) hybrid system. The two inputs are the torques of the two motors. The two outputs are the carrier speed and transmission output torque. Using the traditional control method, the multi-objective control quality cannot be guaranteed because of the adopted static decoupling method and proportional–integral–derivative (PID) controllers. In this paper, the problems of the traditional control method are carefully analyzed, and a new control method is proposed. Instead of static decoupling, dynamic decoupling is adopted to improve the decoupling control effect. A predictive functional controller instead of a PID controller is adopted to deal with the pure delay caused by controller area network (CAN) communication. The tracking effect of the target value is further improved by predictive functional controllers. For the two decoupled subsystems, that is, the integral system and the second-order underdamped system, two predictive functional controllers are designed. The new control method was verified by simulations and tests. The results show that the new control method is superior to the traditional control method for CHS.


2013 ◽  
Vol 385-386 ◽  
pp. 1122-1126
Author(s):  
Yue Hua Huang ◽  
Qian Cheng Li ◽  
Chen Chen ◽  
Na Peng ◽  
Zuo Dong Duan ◽  
...  

Due to the lack of fossil fuels, people are paying more and more attention to renewable energy. Wind energy is one of the important renewable energy. Unpredictability and volatility of the wind source make the output power unstable, so we need to control the active Power. This paper uses fuzzy control method, and the simulation results show that fuzzy control method mentioned in this paper is better than the conventional PI control for Wind power, the nonlinear system. Based on the analysis of pitch control theory and control process, we design fuzzy pitch controller and its model. We simulates gust wind speed imitates, wind turbine control and verifies the effects of the blur pitch control in a constant speed and constant frequency wind power generation system. According to the results of the simulation, we know the pitch controller of fuzzy logic has a better effect on the active control of the generator of the wind power generation system.


2011 ◽  
Vol 347-353 ◽  
pp. 2260-2267
Author(s):  
Wei Li ◽  
Hong Li Sun ◽  
Zuo Xia Xing ◽  
Lei Chen

Load fluctuation of wind turbine under tower shadow was researched,introducing individual pitch control. First,establish the linear time-varying model of the rotor,make it into the linear time invariant model through Coleman transformation. Then,based on this model,achieving the design of individual pitch system with PID controller. Comparing the loads of wind turbine under tower shadow between individual pitch control and collective pitch control and analysing the fatigue damage of wind turbine through rainflow cycle counting.The result shows that load fluctuation of wind turbine using the individual pitch control under tower shadow has better effect and reduces the effect of tower shadow,extend the working life of wind turbine.


Author(s):  
Zhongzhou Yang ◽  
Yaoyu Li ◽  
John E. Seem

Individual pitch control (IPC) for wind turbine load reduction in Region 3 operation is improved when wake interaction is considered. The Larsen wake model is applied for composing the rotor wind profile for downstream turbines under wake interaction. The wind profile of the turbine wake was generated by modifying the NREL’s TurbSim codes. The state-space models of wind turbine were obtained via linearization of wind turbine model available in the NREL’s aeroelastic design code FAST. In particular, in order to obtain more accurate state-space models, equivalent circular wind profile was generated so as to better determine the local pitch reference. Based on such models, IPC controllers were designed following the disturbance accommodating control (DAC) and periodic control framework. The simulation results showed that the turbine loads can be further reduced using the switching control scheme based on wake modeling, as compared with the generic DAC without wake consideration.


Sign in / Sign up

Export Citation Format

Share Document