Study on Vibroseis Data Preprocessing Method of Metal Mining Seismic Exploration

2013 ◽  
Vol 448-453 ◽  
pp. 3751-3756 ◽  
Author(s):  
Jun Qiu Wang ◽  
Jun Lin ◽  
Xiang Bo Gong ◽  
Ran Zeng

In order to improve the resolution of seismic exploration, this paper mainly studied the vibroseis data preprocessing method of metal mining seismic exploration. With the characteristics of vibroseis seismic data, we studied the correlation algorithm of detecting shot gather records, system analyzed the source and classification of noise in copper-nickel detection with Hydraulic sweep source in Jinchang, and chose the denoising method according to the characteristics of noise in the shot gather records. After preprocessing, the SNR of vibroseis seismic data is effectively improved, and then the resolution of seismic section is enhanced.

Geophysics ◽  
1991 ◽  
Vol 56 (1) ◽  
pp. 139-141 ◽  
Author(s):  
D. C. Lawton ◽  
H. V. Lyatsky

At a coal field in central Alberta, Canada, the acoustic reflectivity of shallow coal seams was found to be dominated by the density contrast between coal and host bentonitic sediments. Sonic logs and a check‐shot survey showed that the compressional‐wave velocity is almost constant through the coal zone and the overlying sediments, and ranges in value between 2000 m/s and 2350 m/s over different parts of the coal field. The average coal density is [Formula: see text], whereas the density of the sediments is about [Formula: see text]. Results are illustrated using logs from a typical drillhole in the coal field. At this location, the time reflectivity sequence based on both the density and sonic logs is very similar to that obtained when the density log only is used, with a constant velocity assumed through the coal zone. At another drillhole location in the coal field, where reflection seismic data had been acquired, a synthetic seismogram generated from the density log closely matches the stacked seismic section.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lei Hao ◽  
Shuai Cao ◽  
Pengfei Zhou ◽  
Lei Chen ◽  
Yi Zhang ◽  
...  

In view of the key problem that a large amount of noise in seismic data can easily induce false anomalies and interpretation errors in seismic exploration, the time-frequency spectrum subtraction (TF-SS) method is adopted into data processing to reduce random noise in seismic data. On this basis, the main frequency information of seismic data is calculated and used to optimize the filtering coefficients. According to the characteristics of effective signal duration between seismic data and voice data, the time-frequency spectrum selection method and filtering coefficient are modified. In addition, simulation tests were conducted by using different S/R, which indicates the effectiveness of the TF-SS in removing the random noise.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Fengjiao Zhang ◽  
Pan Zhang ◽  
Zhuo Xu ◽  
Xiangbo Gong ◽  
Liguo Han

The seismic exploration method could explore deep metal ore bodies (depth > 1000 m). However, it is difficult to describe the geometry of the complex metal ore body accurately. Seismic full waveform inversion is a relatively new method to achieve accurate imaging of subsurface structures, but its success requires better initial models and low-frequency data. The seismic data acquired in the metal mine area is usually difficult to meet the requirements of full waveform inversion. The passive seismic data usually contains good low frequency information. In this paper, we use both passive and active seismic datasets to improve the full waveform inversion results in the metal mining area. The results show that the multisource seismic full waveform inversion could obtain a suitable result for high-resolution seismic imaging of metal ore bodies.


Author(s):  
Fuyu Qiao ◽  
Yongguang Ma ◽  
Liangyu Ma ◽  
Sihan Chen ◽  
Hao Yang ◽  
...  

2021 ◽  
Vol 40 (3) ◽  
pp. 186-192
Author(s):  
Thomas Krayenbuehl ◽  
Nadeem Balushi ◽  
Stephane Gesbert

The principles and benefits of seismic sequence stratigraphy have withstood the test of time, but the application of seismic sequence stratigraphy is still carried out mostly manually. Several tool kits have been developed to semiautomatically extract dense stacks of horizons from seismic data, but they stop short of exploiting the full potential of seismo-stratigraphic models. We introduce novel geometric seismic attributes that associate relative geologic age models with seismic geomorphological models. We propose that a relative sea level curve can be derived from the models. The approach is demonstrated on a case study from the Lower Cretaceous Kahmah Group in the northwestern part of Oman where it helps in sweet-spotting and derisking elusive stratigraphic traps.


2021 ◽  
pp. 1-1
Author(s):  
Wu Wei ◽  
Jun Yan ◽  
Xiaofu Wu ◽  
Chen Wang ◽  
Gengxin Zhang

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Chenglong Yu ◽  
Shihong Yue ◽  
Jianpei Wang ◽  
Huaxiang Wang

As an advanced process detection technology, electrical impedance tomography (EIT) has widely been paid attention to and studied in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper, an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and widely used in any imaging process. Experimental results validate the two proposed indexes.


Geophysics ◽  
1984 ◽  
Vol 49 (8) ◽  
pp. 1223-1238 ◽  
Author(s):  
John T. Kuo ◽  
Ting‐fan Dai

In taking into account both compressional (P) and shear (S) waves, more geologic information can likely be extracted from the seismic data. The presence of shear and converted shear waves in both land and marine seismic data recordings calls for the development of elastic wave‐migration methods. The migration method presently developed consists of simultaneous migration of P- and S-waves for offset seismic data based on the Kirchhoff‐Helmholtz type integrals for elastic waves. A new principle of simultaneously migrating both P- and S-waves is introduced. The present method, named the Kirchhoff elastic wave migration, has been tested using the 2-D synthetic surface data calculated from several elastic models of a dipping layer (including a horizontal layer), a composite dipping and horizontal layer, and two layers over a half‐space. The results of these tests not only assure the feasibility of this migration scheme, but also demonstrate that enhanced images in the migrated sections are well formed. Moreover, the signal‐to‐noise ratio increases in the migrated seismic section by this elastic wave migration, as compared with that using the Kirchhoff acoustic (P-) wave migration alone. This migration scheme has about the same order of sensitivity of migration velocity variations, if [Formula: see text] and [Formula: see text] vary concordantly, to the recovery of the reflector as that of the Kirchhoff acoustic (P-) wave migration. In addition, the sensitivity of image quality to the perturbation of [Formula: see text] has also been tested by varying either [Formula: see text] or [Formula: see text]. For varying [Formula: see text] (with [Formula: see text] fixed), the migrated images are virtually unaffected on the [Formula: see text] depth section while they are affected on the [Formula: see text] depth section. For varying [Formula: see text] (with [Formula: see text] fixed), the migrated images are affected on both the [Formula: see text] and [Formula: see text] depth sections.


Sign in / Sign up

Export Citation Format

Share Document