Deep Mining Optimization of Rock Burst Mines

2013 ◽  
Vol 448-453 ◽  
pp. 3859-3862
Author(s):  
Yong Mei

To prevent threaten of impact disaster, high-pressure water is injected into coal face, which is most widely used in impact-type mine. In such cases, by analyzing the rock burst tendency of a particular type of deep mining pit and occurrence of the mining process, rock samples drilled from the coal mine were taken for the conventional mechanical properties test and rock burst tendency test respectively under dry and wet state. Cuttings volume indicator affected by injection has been optimized to improve the prediction sensitivity. "One shift anti-impact, two-shift production "patterns labor organization model, adjusted development system layout and cut drilling index optimizations, as well as the allocation of high-pressure water injection drilling means, greatly improving the water injection effect, which probably provide a reference for similar mines to safe and efficiently mining.

2012 ◽  
Vol 50 (4) ◽  
pp. 645-648 ◽  
Author(s):  
Xuehua Chen ◽  
Weiqing Li ◽  
Xianyang Yan
Keyword(s):  

2012 ◽  
Vol 524-527 ◽  
pp. 1190-1195
Author(s):  
Jian Jun Liu ◽  
Quan Shu Li ◽  
Gui Hong Pei

Channeling flow frequently occurs during the high pressure water injection of low permeability reservoir. The injection process is complex and covers so many parameters of which the contribution to channeling flow is necessarily to be studied. In this paper, numerical simulation is combined with sensitivity analysis method to calculate the significance of the weight of parameters to the channeling flow. First the values of different parameters are produced by using Latin hypercube method; second, by using these parameters, finite element model have been established and simulated, and the quantity of channeling flow has been calculated; then Spearman rank relation is applied to measure the relation of parameters and channeling flow. The results states that, in 10 years continuous injection, the well spacing and injection pressure have significant impact on the channeling flow. This states that during the application of high pressure water injection, the pressure and well spacing should be controlled especially.


Injury Extra ◽  
2006 ◽  
Vol 37 (11) ◽  
pp. 430-431
Author(s):  
Ross Hutchison ◽  
Imran Ilyas ◽  
Philip T. Munro

Hand ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 121-123 ◽  
Author(s):  
Ainhoa Costas-Chavarri ◽  
Tolga Turker ◽  
Joseph E. Kutz

1989 ◽  
Vol 7 (2) ◽  
pp. 165-167 ◽  
Author(s):  
Peter A. Curka ◽  
Carey D. Chisholm

2012 ◽  
Vol 524-527 ◽  
pp. 1147-1152
Author(s):  
Chao Zheng ◽  
Tian Hong Yang ◽  
Qing Lei Yu ◽  
Peng Hai Zhang

Gas outburst has been a major disaster in high gas mine. Flow law of gas in coal seam was studied, and gas drainage measures were proposed were extraordinarily useful for mine safety and rational use of gas. Finite element numerical method was applied to study changing law of gas pressure before and after the high-pressure water injection and damage deformation of coal under high-pressure water based on fluid-solid coupling and gas-solid coupling and damage theory. This research shows that: (1) a damage area was generated in coal seam under high-pressure water injection. Range of the damage area increase rapidly at the start of water injection and gradually slow down with the passage of time, eventually be more stable. (2) The permeability of rock mass of coal under high-pressure water injection. (3) High-pressure water injection had significant effect on gas drainage in a certain area. It provided a theoretical basis for selecting reasonable design programs to product gas by high-pressure water injection technology.


Sign in / Sign up

Export Citation Format

Share Document