A Non-Repudiation E-Mail Transmission Protocol and its Formal Analysis

2013 ◽  
Vol 462-463 ◽  
pp. 984-988
Author(s):  
Ze Ming Ren ◽  
Ling Yun Xu ◽  
Qian Liu ◽  
An Dong Fan

In order to reduce the amount of data exchange in E-mail transmission process, a non-repudiation E-mail transmission protocol was proposed based on the digital signature technology. By using the formal analysis based on the extended strand space method, strict authentication and analysis were conducted for the security of data transmission and the identity of both the transmitter and receiver. Furthermore, the safety and effectiveness of this protocol were verified.

2021 ◽  
Vol 1791 (1) ◽  
pp. 012054
Author(s):  
A A Lyubchenko ◽  
E Y Kopytov ◽  
A G Malyutin ◽  
A A Bogdanov

2021 ◽  
Vol 13 (15) ◽  
pp. 8120
Author(s):  
Shaheer Ansari ◽  
Afida Ayob ◽  
Molla S. Hossain Lipu ◽  
Mohamad Hanif Md Saad ◽  
Aini Hussain

Solar photovoltaic (PV) is one of the prominent sustainable energy sources which shares a greater percentage of the energy generated from renewable resources. As the need for solar energy has risen tremendously in the last few decades, monitoring technologies have received considerable attention in relation to performance enhancement. Recently, the solar PV monitoring system has been integrated with a wireless platform that comprises data acquisition from various sensors and nodes through wireless data transmission. However, several issues could affect the performance of solar PV monitoring, such as large data management, signal interference, long-range data transmission, and security. Therefore, this paper comprehensively reviews the progress of several solar PV-based monitoring technologies focusing on various data processing modules and data transmission protocols. Each module and transmission protocol-based monitoring technology is investigated with regard to type, design, implementations, specifications, and limitations. The critical discussion and analysis are carried out with respect to configurations, parameters monitored, software, platform, achievements, and suggestions. Moreover, various key issues and challenges are explored to identify the existing research gaps. Finally, this review delivers selective proposals for future research works. All the highlighted insights of this review will hopefully lead to increased efforts toward the enhancement of the monitoring technologies in future sustainable solar PV applications.


Author(s):  
Takumi Saito ◽  
Shigenari Nakamura ◽  
Tomoya Enokido ◽  
Makoto Takizawa

2016 ◽  
Vol 37 (1) ◽  
pp. 231-252
Author(s):  
Marcin Bednarek ◽  
Tadeusz Dąbrowski ◽  
Tomasz Wawer

Abstract Communication between the process stations of the distributed control system is carried out. By the supervision and therapeutic systems of the stations communication process diagnosis is performed. Supervision and therapeutic systems are responsible for the security of transmitted data. The security is considered in this article mainly in the aspect of resistance to external destructive factors on the data transmission process. It is assumed that the transmission security can be provided by mechanisms protecting the integrity of the transmitted data. Correctness of the data is controlled by using one-way hash function calculated on the basis of the transmitted value variable and also is attached to the transmitted data. This allows to maintain the integrity of the transmitted process data. A solutions using one-way hash function to protection of the transmission before changing message contents (caused by eg. intruder interference) are proposed in the article.


Sensors ◽  
2016 ◽  
Vol 16 (4) ◽  
pp. 487 ◽  
Author(s):  
Nadeem Javaid ◽  
Mehreen Shah ◽  
Ashfaq Ahmad ◽  
Muhammad Imran ◽  
Majid Khan ◽  
...  

2020 ◽  
Author(s):  
Zhi Yong Huang ◽  
Yujie Wang ◽  
Linling Wang

BACKGROUND Regular physical activity is proven to help prevent and treat noncommunicable diseases such as heart disease, stroke, diabetes, and breast and colon cancer. The exercise data generated by health and fitness devices (eg, treadmill, exercise bike) are very important for health management service providers to develop personalized training programs. However, at present, there is little research on a unified interoperability framework in the health and fitness domain, and there are not many solutions; besides, the privatized treadmill data transmission scheme is not conducive to data integration and analysis. OBJECTIVE This article will expand the IEEE 11073-PHD standard protocol family, develop standards for health and fitness device (using treadmill as an example) based on the latest version of the 11073-20601 optimized exchange protocol, and design protocol standards compliance testing process and inspection software, which can automatically detect whether the instantiated object of the treadmill meets the standard. METHODS The study includes the following steps: (1) Map the data transmitted by the treadmill to the 11073-PHD objects; (2) Construct a programming language structure corresponding to the 11073-PHD application protocol data unit (APDU) to complete the coding and decoding part of the test software; and (3) Transmit the instantiated simulated treadmill data to the gateway test software through transmission control protocol for standard compliance testing. RESULTS According to the characteristics of the treadmill, a data exchange framework conforming to 11073-PHD is constructed, and a corresponding testing framework is developed; a treadmill agent simulation is implemented, and the interoperability test is performed. Through the designed testing process, the corresponding testing software was developed to complete the standard compliance testing of the treadmill. CONCLUSIONS The extended research of IEEE 11073-PHD in the field of health and fitness provides a potential new idea for the data transmission framework of sports equipment such as treadmills, which may also provide some help for the development of sports health equipment interoperability standards.


2021 ◽  
Vol 11 (19) ◽  
pp. 9145
Author(s):  
Siddig M. Elkhider ◽  
Omar Al-Buraiki ◽  
Sami El-Ferik

This paper addresses the problem of controlling a heterogeneous system composed of multiple Unmanned Aerial Vehicles (UAVs) and Autonomous Underwater Vehicles (AUVs) for formation and containment maintenance. The proposed approach considers actuator time delay and, in addition to formation and containment, considers obstacle avoidance, and offers a robust navigation algorithm and uses a reliable middleware for data transmission and exchange. The methodology followed uses both flocking technique and modified L1 adaptive control to ensure the proper navigation and coordination while avoiding obstacles. The data exchange between all the agents is provided through the data distribution services (DDS) middleware, which solves the interoperability issue when dealing with heterogeneous multiagent systems. The modified L1 controller is a local controller for stabilizing the dynamic model of each UAV and AUV, and the flocking approach is used to coordinate the followers around the leader or within the space delimited by their leaders. Potential Field (PF) allows obstacle avoidance during the agents’ movement. The performance of the proposed approach under the considerations mentioned above are verified and demonstrated using simulations.


Sign in / Sign up

Export Citation Format

Share Document