Immune Computation of Anti-Worm Static Web System

2011 ◽  
Vol 48-49 ◽  
pp. 603-606
Author(s):  
Tao Gong ◽  
Song Wang ◽  
Lei Yao

A normal model and an immune computation model were modelled to detect recognize and eliminate worms in a static Web system. Immune computation included detecting, recognizing, learning and eliminating non-selfs. The self/non-self detection was based on querying in the self database and the self database was built on the normal model of the static Web system. After the detection, the recognition of known non-self was based on querying in the non-self database and the recognition of unknown non-self was based on learning unknown non-self. The learning algorithm was designed on the neural network or the learning mechanism from examples. The last step was elimination of all the non-self and failover of the damaged Web system. The immunization of the static Web system was programmed with Java to test effectiveness of the approach. Some worms infected the static Web system, and caused the abnormity. The results of the immunization simulations show that, the immune program can detect all worms, recognize known worms and most unknown worms, and eliminate the worms. The damaged files of the static Web system can all be repaired through the normal model and immunization. The normal model & immune computation model are effective in some anti-worm applications.

Author(s):  
Baiyu Peng ◽  
Qi Sun ◽  
Shengbo Eben Li ◽  
Dongsuk Kum ◽  
Yuming Yin ◽  
...  

AbstractRecent years have seen the rapid development of autonomous driving systems, which are typically designed in a hierarchical architecture or an end-to-end architecture. The hierarchical architecture is always complicated and hard to design, while the end-to-end architecture is more promising due to its simple structure. This paper puts forward an end-to-end autonomous driving method through a deep reinforcement learning algorithm Dueling Double Deep Q-Network, making it possible for the vehicle to learn end-to-end driving by itself. This paper firstly proposes an architecture for the end-to-end lane-keeping task. Unlike the traditional image-only state space, the presented state space is composed of both camera images and vehicle motion information. Then corresponding dueling neural network structure is introduced, which reduces the variance and improves sampling efficiency. Thirdly, the proposed method is applied to The Open Racing Car Simulator (TORCS) to demonstrate its great performance, where it surpasses human drivers. Finally, the saliency map of the neural network is visualized, which indicates the trained network drives by observing the lane lines. A video for the presented work is available online, https://youtu.be/76ciJmIHMD8 or https://v.youku.com/v_show/id_XNDM4ODc0MTM4NA==.html.


2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.


2018 ◽  
Vol 7 (11) ◽  
pp. 430 ◽  
Author(s):  
Krzysztof Pokonieczny

The classification of terrain in terms of passability plays a significant role in the process of military terrain assessment. It involves classifying selected terrain to specific classes (GO, SLOW-GO, NO-GO). In this article, the problem of terrain classification to the respective category of passability was solved by applying artificial neural networks (multilayer perceptron) to generate a continuous Index of Passability (IOP). The neural networks defined this factor for primary fields in two sizes (1000 × 1000 m and 100 × 100 m) based on the land cover elements obtained from Vector Smart Map (VMap) Level 2 and Shuttle Radar Topography Mission (SRTM). The work used a feedforward neural network consisting of three layers. The paper presents a comprehensive analysis of the reliability of the neural network parameters, taking into account the number of neurons, learning algorithm, activation functions and input data configuration. The studies and tests carried out have shown that a well-trained neural network can automate the process of terrain classification in terms of passability conditions.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
L. Hesslow ◽  
L. Unnerfelt ◽  
O. Vallhagen ◽  
O. Embreus ◽  
M. Hoppe ◽  
...  

Integrated modelling of electron runaway requires computationally expensive kinetic models that are self-consistently coupled to the evolution of the background plasma parameters. The computational expense can be reduced by using parameterized runaway generation rates rather than solving the full kinetic problem. However, currently available generation rates neglect several important effects; in particular, they are not valid in the presence of partially ionized impurities. In this work, we construct a multilayer neural network for the Dreicer runaway generation rate which is trained on data obtained from kinetic simulations performed for a wide range of plasma parameters and impurities. The neural network accurately reproduces the Dreicer runaway generation rate obtained by the kinetic solver. By implementing it in a fluid runaway-electron modelling tool, we show that the improved generation rates lead to significant differences in the self-consistent runaway dynamics as compared to the results using the previously available formulas for the runaway generation rate.


2010 ◽  
Vol 22 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Tamer Mansour ◽  
◽  
Atsushi Konno ◽  
Masaru Uchiyama

This paper studies the use of neural networks as a tuning tool for the gain in Modified Proportional-Integral-Derivative (MPID) control used to control a flexible manipulator. The vibration control gain in the MPID controller has been determined in an empirical way so far. It is a considerable time consuming process because the vibration control performance depends not only on the vibration control gain but also on the other parameters such as the payload, references and PD joint servo gains. Hence, the vibration control gain must be tuned considering the other parameters. In order to find optimal vibration control gain for the MPID controller, a neural network based approach is proposed in this paper. The proposed neural network finds an optimum vibration control gain that minimizes a criteria function. The criteria function is selected to represent the effect of the vibration of the end effector in addition to the speed of response. The scaled conjugate gradient algorithm is used as a learning algorithm for the neural network. Tuned gain response results are compared to results for other types of gains. The effectiveness of using the neural network appears in the reduction of the computational time and the ability to tune the gain with different loading condition.


Author(s):  
Е. Ерыгин ◽  
E. Erygin ◽  
Т. Дуюн ◽  
T. Duyun

This article describes the task of predicting roughness when finishing milling using neural network modeling. As a basis for the creation and training of an artificial neural network, a progressive formu-la for determining the roughness during finishing milling is chosen. The thermoEMF of the processing and processed materials is used as one of the parameters for calculating the roughness. The use of thermoEMF allows to take into account the material of the workpiece and the cutting tool, which af-fects the accuracy of the results. A training sample is created with data for five inputs and one output. The architecture, features and network learning algorithm are described. A neural network that de-termines the roughness for finishing milling has been created and configured. The process of learning and debugging of the neural network by means of graphs is clearly displayed. The network operability is checked on the test data, which allows obtaining positive results.


2020 ◽  
Vol 5 (2) ◽  
pp. 221-224
Author(s):  
Joy Oyinye Orukwo ◽  
Ledisi Giok Kabari

Diabetes has always been a silent killer and the number of people suffering from it has increased tremendously in the last few decades. More often than not, people continue with their normal lifestyle, unaware that their health is at severe risk and with each passing day diabetes goes undetected. Artificial Neural Networks have become extensively useful in medical diagnosis as it provides a powerful tool to help analyze, model and make sense of complex clinical data. This study developed a diabetes diagnosis system using feed-forward neural network with supervised learning algorithm. The neural network is systematically trained and tested and a success rate of 90% was achieved.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Liu ◽  
Jiarui Wang ◽  
Jiewen Deng ◽  
Wenquan Sheng ◽  
Pengxiang Tan

Non-intrusive load monitoring has broad application prospects because of its low implementation cost and little interference to energy users, which has been highly expected in the industrial field recently due to the development of learning algorithms. Targeting at the investigation of practical and reliable load monitoring in field implementations, a non-intrusive load disaggregation approach based on an enhanced neural network learning algorithm is proposed in this article. The presented appliance monitoring approach establishes the neural network model following the supervised learning strategy at first and then utilizes the unsupervised learning based optimization to enhance the flexibility and adaptability for diverse scenarios, leading to the improvement of disaggregation performance. By verifications on the REDD public dataset, the proposed approach is demonstrated to be with good performance in non-intrusive load monitoring. In addition to the accuracy enhancement, the proposed approach is also with good scalability, which is efficient in recognizing the newly added appliance.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Danhe Chen ◽  
K. A. Neusypin ◽  
Xiang Zhang ◽  
Chuangge Wang

In this paper an advanced method for the navigation system correction of a spacecraft using an error prediction model of the system is proposed. Measuring complexes have been applied to determine the parameters of a spacecraft and the processing of signals from multiple measurement systems is carried out. Under the condition of interference in flight, when the signals of external system (such as GPS) disappear, the correction of navigation system in autonomous mode is considered to be performed using an error prediction model. A modified Volterra neural network based on the self-organization algorithm is proposed in order to build the prediction model, and the modification of algorithm indicates speeding up the neural network. Also, three approaches for accelerating the neural network have been developed; two examples of the sequential and parallel implementation speed of the system are presented by using the improved algorithm. In addition, simulation for a returning spacecraft to atmosphere is performed to verify the effectiveness of the proposed algorithm for correction of navigation system.


Sign in / Sign up

Export Citation Format

Share Document