Sheet Polymeric Iron (III) Porphyrin Complexes Catalytic Oxidation of Styrene with Molecular Oxygen

2014 ◽  
Vol 496-500 ◽  
pp. 88-91
Author(s):  
Xido Dong Li ◽  
Xiao Feng Wang ◽  
Yuan Cheng Zhu ◽  
Mei Mei An

The sheet polymrtic iron (III) porphyrin complex [PFe (III)TPP] was prepared and charactrtized by FT-IR, TG-DTA and DTG, SEM and XPS. It was applied to catalytic oxidation of styrene with molecular oxygen and exhibited excellent catalytic activity. The results showed that the conversion reached to 50.5% in mild concitions, the major products of benzaldhyde (65.2% at 90°C) were obtained, and the catalyst could be efficiently reused five times.

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1281 ◽  
Author(s):  
Yongwei Ju ◽  
Zhongtian Du ◽  
Chuhong Xiao ◽  
Xingfei Li ◽  
Shuang Li

Selective oxidation of α-hydroxy esters is one of the most important methods to prepare high value-added α-keto esters. An efficient catalytic system consisting of Zn(NO3)2/VOC2O4 is reported for catalytic oxidation of α-hydroxy esters with molecular oxygen. Up to 99% conversion of methyl DL-mandelate or methyl lactate could be facilely obtained with high selectivity for its corresponding α-keto ester under mild reaction conditions. Zn(NO3)2 exhibited higher catalytic activity in combination with VOC2O4 compared with Fe(NO3)3 and different nitric oxidative gases were detected by situ attenuated total reflection infrared (ATR-IR) spectroscopy. UV-vis and ATR-IR results indicated that coordination complex formed in Zn(NO3)2 in CH3CN solution was quite different from Fe(NO3)3; it is proposed that the charge-transfer from Zn2+ to coordinated nitrate groups might account for the generation of different nitric oxidative gases. The XPS result indicate that nitric oxidative gas derived from the interaction of Zn(NO3)2 with VOC2O4 could be in favor of oxidizing VOC2O4 to generate active vanadium (V) species. It might account for different catalytic activity of Zn(NO3)2 or Fe(NO3)3 combined with VOC2O4. This work contributes to further development of efficient aerobic oxidation under mild reaction conditions.


2019 ◽  
Vol 8 (5) ◽  
pp. 380-389
Author(s):  
Ikram EL Amrani ◽  
Ahmed Atlamsani

A commercial montmorillonite clay catalyst, K-10 montmorillonite, was tested for catalytic oxidation of aldehydes in the presence of molecular oxygen under mild conditions. K-10 montmorillonite catalysed the oxidation of aldehydes with good activity and excellent selectivity toward the formation of the corresponding acids. The effects of the amount of catalyst, temperature and solvent on the catalytic activity were investigated. Remarkably, this catalyst was reusable without any appreciable loss in activity and selectivity.


2000 ◽  
Vol 55 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Jutta Knaudt ◽  
Stefan Förster ◽  
Ulrich Bartsch ◽  
Anton Rieker ◽  
Ernst-G Jäger

The catalytic oxidation of 2,4.6-tri-tert-butylphenol and 2,4,6-tri-tert-butylaniline with molecular oxygen and tert-butylhydroperoxide was investigated using biomimetic Mn-, Fe- and Co-complexes as catalysts. The catalytic activity and product distribution were determined and compared with those observed in the reactions of the well-known Co(salen) complex


2014 ◽  
Vol 989-994 ◽  
pp. 490-493
Author(s):  
Rui Yun Lai ◽  
Xiao Long Tang ◽  
Hong Hong Yi ◽  
Kai Li ◽  
Ying Xiang ◽  
...  

The effect of MgO addition on SO2tolerance of MnOxfor the NO catalytic oxidation was investigated in this work. MgO addition significantly promotes the SO2resistance of MnOxat low temperature range of 50–250°C. The slight decrease in catalytic activity over Mn-Mg-Oxexposure to SO2is attributed to the partially deactivation of the catalytic active site poisoned by SO2. Through XRD and FT-IR characterization, MgO may effectively inhibit the competitive adsorption between NOxand SO2in manganese site, and enhance SO2adsorption on the magnesia surface.


2020 ◽  
Vol 42 (4) ◽  
pp. 504-504
Author(s):  
Mo Thi Nguyen Mo Thi Nguyen ◽  
Cam Minh Le Cam Minh Le ◽  
Tuan Minh Nguyen Tuan Minh Nguyen ◽  
Hao Hoang Nguyen Hao Hoang Nguyen ◽  
Anwar ul Haq Ali Shah Hung Van Hoang Anwar ul Haq Ali Shah Hung Van Hoang

Catalytic oxidation of organic volatile compounds (VOCs) is considered superior to conventional methods because very low concentration of VOCs can also be oxidized and removed at low temperatures without consumption of addditional fuel and introduction of NOx compounds into the environment. Herein, the synthesis of MnO2 nanoparticles on bentonite (Bent) support in the presence of CuO for catalytic oxidation of m-xylene is reported. The synthesized materials were analyzed with FT-IR, XRD, and TEM analysis for structural and morphological characterization. XRD and TEM analysis indicated the formation of δ-MnO2 with sheet structure on Bent surface. Temperature-programmed reduction (H2-TPR) of hydrogen was used to investigate catalytic performance of δ-MnO2 towards oxidation of m-xylene at different temperatures. The catalytic activity was strongly dependent on the δ-MnO2 content in the synthesized material. 100 % oxidation of m-xylene with observed with 10% Mn content at temperature below than 325 oC. Intersetingly introduction of CuO greatly improved the catalytic activity of Mn-Bent materials. The presence of Cu in Mn-Bent has greatly reduced the temperature for complete oxidation of m-xylene. In this case100% conversion of m-xylene was observed at 250 oC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Hossein Abdollahi-Basir ◽  
Boshra Mirhosseini-Eshkevari ◽  
Farzad Zamani ◽  
Mohammad Ali Ghasemzadeh

AbstractA one-pot three component reaction of benzaldehydes, 1H-tetrazole-5-amine, and 3-cyanoacetyl indole in the presence of a new hexamethylenetetramine-based ionic liquid/MIL-101(Cr) metal–organic framework as a recyclable catalyst was explored. This novel catalyst, which was fully characterized by XRD, FE-SEM, EDX, FT-IR, TGA, BET, and TEM exhibited outstanding catalytic activity for the preparation of a range of pharmaceutically important tetrazolo[1,5-a]pyrimidine-6-carbonitriles with good to excellent yields in short reaction time.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaoliang Liu ◽  
Jing Shi ◽  
Guang Yang ◽  
Jian Zhou ◽  
Chuanming Wang ◽  
...  

AbstractZeolite morphology is crucial in determining their catalytic activity, selectivity and stability, but quantitative descriptors of such a morphology effect are challenging to define. Here we introduce a descriptor that accounts for the morphology effect in the catalytic performances of H-ZSM-5 zeolite for C4 olefin catalytic cracking. A series of H-ZSM-5 zeolites with similar sheet-like morphology but different c-axis lengths were synthesized. We found that the catalytic activity and stability is improved in samples with longer c-axis. Combining time-resolved in-situ FT-IR spectroscopy with molecular dynamics simulations, we show that the difference in catalytic performance can be attributed to the anisotropy of the intracrystalline diffusive propensity of the olefins in different channels. Our descriptor offers mechanistic insight for the design of highly effective zeolite catalysts for olefin cracking.


RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12532-12542
Author(s):  
HanShuang Liu ◽  
KaiJun Wang ◽  
XiaoYan Cao ◽  
JiaXin Su ◽  
Zhenggui Gu

The La2O3–CuO–MgO catalyst acts on the oxidation of cumene and shows excellent catalytic activity through the coordination of surface and interior.


Sign in / Sign up

Export Citation Format

Share Document