Study on Optimization of Numerical Simulation for Smooth Blasting Parameters in Xishimen Iron Mine

2014 ◽  
Vol 529 ◽  
pp. 605-610 ◽  
Author(s):  
Jian Dong Qi ◽  
Pei Wang ◽  
Yong Tao Gao ◽  
Zhong An Jiang

In order to make normal rock avalanche but not have significant impact on other parts of surrounding rock and produce evident deformation in the process of blasting heading, the basic mechanical property of rocks in Xishimen Iron Mine was taken as example to analyze. The process of coupling charge blasting in the surrounding holes of smooth blasting was simulated by applying the finite element numerical simulation software ANSYS/ LS-DYNA. The result shows that the surrounding rock has smallest stress and spall normally when borehole spacing of surrounding holes is 0.6m, thus boosting the efficiency of smooth blasting.

2013 ◽  
Vol 645 ◽  
pp. 426-429 ◽  
Author(s):  
Xiao Hui Xue ◽  
Zhong Ming Su

Based on selecting a tunnel collapse under typical conditions of the shallow-buried terrain under unsymmetrical pressure, analyzing the monitoring measurement date, using the software of finite element numerical simulation, the paper simulates the tunnel excavation in lengthwise, deduces the change laws of stress in primary support, the mechanical properties and the collapse mechanism.


2012 ◽  
Vol 229-231 ◽  
pp. 55-58
Author(s):  
Jun Fan

To obtain the know-how of the deficiency for the filling capability, taking Ti75 alloy as the research object, at the same height of reducing, strain rates during forming as the control objective, the finite element numerical simulation method was used to simulate the hot compression with DEFORM-3D, analyzing the effect of the strain rates on the distribution of strain and stress.


2013 ◽  
Vol 718-720 ◽  
pp. 1645-1650
Author(s):  
Gen Yin Cheng ◽  
Sheng Chen Yu ◽  
Zhi Yong Wei ◽  
Shao Jie Chen ◽  
You Cheng

Commonly used commercial simulation software SYSNOISE and ANSYS is run on a single machine (can not directly run on parallel machine) when use the finite element and boundary element to simulate muffler effect, and it will take more than ten days, sometimes even twenty days to work out an exact solution as the large amount of numerical simulation. Use a high performance parallel machine which was built by 32 commercial computers and transform the finite element and boundary element simulation software into a program that can running under the MPI (message passing interface) parallel environment in order to reduce the cost of numerical simulation. The relevant data worked out from the simulation experiment demonstrate that the result effect of the numerical simulation is well. And the computing speed of the high performance parallel machine is 25 ~ 30 times a microcomputer.


2014 ◽  
Vol 722 ◽  
pp. 140-146
Author(s):  
Wen Juan Zhang ◽  
Long Wu ◽  
Gang Chen

In this paper the drawing process of Box-torque was simulated by Dynaform, which is FEM simulation software. The process parameters, which affected the quality of forming, were optimized by finite element simulation. The emphasis was focus on the optimization of draw-bead and BHF and data were summarized from the optimization graphs. In this simulation, lengthways draw-bead was set on the technical face for reducing or eliminating wrinkle. It was innovation difference from the usual that the draw-bead was set on binder. Finally the correctness of simulation was approved by comparing the optimization of simulation with the data of experimentation.


2013 ◽  
Vol 671-674 ◽  
pp. 230-234
Author(s):  
Yu Jun Zuo ◽  
De Kang Zhu ◽  
Wan Cheng Zhu

In order to study the supporting of deep surrounding rock with zonal disintegration tendency, the zonal disintegration phenomenon of deep surrounding rock under three supporting forms is analyzed by the ABAQUS finite element software in this paper, and three supporting forms are un-supporting, bolting and grouting, and combined “Bolting and grouting plus Anchor rope” supporting. The results show that the different effects to zonal disintegration under different supporting forms will occur. Supporting can help to restrain the zonal disintegration of the reinforcement part advantageously, and also lower rupture degree of zonal disintegration and reduce the size of rupture zone. Meanwhile, the stability of surrounding rock is improved. But zonal disintegration may occur outside reinforcement part under greater ground stress. The results are great importance to a better understanding of the deep roadway supporting.


Sign in / Sign up

Export Citation Format

Share Document