spectral equation
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Sen Zhang ◽  
Dingxi Wang ◽  
Yi Li ◽  
Hangkong Wu ◽  
Xiuquan Huang

Abstract The time spectral method is a very popular reduced order frequency method for analyzing unsteady flow due to its advantage of being easily extended from an existing steady flow solver. Condition number of the inverse Fourier transform matrix used in the method can affect the solution convergence and stability of the time spectral equation system. This paper aims at evaluating the effect of the condition number of the inverse Fourier transform matrix on the solution stability and convergence of the time spectral method from two aspects. The first aspect is to assess the impact of condition number using a matrix stability analysis based upon the time spectral form of the scalar advection equation. The relationship between the maximum allowable Courant number and the condition number will be derived. Different time instant groups which lead to the same condition number are also considered. Three numerical discretization schemes are provided for the stability analysis. The second aspect is to assess the impact of condition number for real life applications. Two case studies will be provided: one is a flutter case, NASA rotor 67, and the other is a blade row interaction case, NASA stage 35. A series of numerical analyses will be performed for each case using different time instant groups corresponding to different condition numbers. The conclusion drawn from the two real life case studies will corroborate the relationship derived from the matrix stability analysis.


Author(s):  
E.V. Prokhvatilov ◽  
V.A. Franke ◽  
M.V. Ioffe ◽  
I.A. Lebedev ◽  
A.M. Puchkov ◽  
...  

Author(s):  
Perevoznikov E. N.

Using the Lorentz model and Hamiltonian systems without dissipation as an example, spectral methods for analyzing the dynamics of systems with chaotic behavior are considered. The insufficiency of the traditional approach to the study of perturbation dynamics based on an analysis of the roots of the classical spectral equation is discussed. It is proposed to study nonlinear systems using the method of constructing spectral equations with different eigenvalues, which allows one to take into account the randomness and multiplicity of states. The spectral features of instability and chaos for systems without dissipation are shown by the example of short-wave perturbations of a flow of a weakly ionized plasma gas.


2020 ◽  
Vol 75 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Maithresh Palemkota ◽  
Tejinder P. Singh

AbstractWe present a new, falsifiable quantum theory of gravity, which we name non-commutative matter-gravity. The commutative limit of the theory is classical general relativity. In the first two papers of this series, we have introduced the concept of an atom of space-time-matter (STM), which is described by the spectral action in non-commutative geometry, corresponding to a classical theory of gravity. We used the Connes time parameter, along with the spectral action, to incorporate gravity into trace dynamics. We then derived the spectral equation of motion for the gravity part of the STM atom, which turns out to be the Dirac equation on a non-commutative space. In the present work, we propose how to include the matter (fermionic) part and give a simple action principle for the STM atom. This leads to the equations for a quantum theory of gravity, and also to an explanation for the origin of spontaneous localisation from quantum gravity. We use spontaneous localisation to arrive at the action for classical general relativity (including matter source) from the action for STM atoms.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Kai Yan ◽  
Qingping Zeng ◽  
Yucan Zhu
Keyword(s):  

2019 ◽  
Vol 74 (11) ◽  
pp. 989-992
Author(s):  
Tejinder P. Singh

AbstractIn the first article of this series, we have introduced the concept of an atom of space-time-matter (STM), which is described by the spectral action of noncommutative geometry, corresponding to a classical theory of gravity. In the present work, we use the Connes time parameter, along with the spectral action, to incorporate gravity into trace dynamics. We then derive the spectral equation of motion for the STM atom, which turns out to be the Dirac equation on a noncommutative space.


Author(s):  
Jean Zinn-Justin

Chapter 24 examines the topic of hyper–asymptotic expansions and instantons. A number of quantum mechanics and quantum field theory (QFT) examples exhibit degenerate classical minima connected by quantum barrier penetration effects. The analysis of the large order behaviour, based on instanton calculus, shows that the perturbative expansion is not Borel summable, and does not define unique functions. An important issue is then what kind of additional information is required to determine the exact expanded functions. While the QFT examples are complicated, and their study is still at the preliminary stage, in quantum mechanics, in the case of some analytic potentials that have degenerate minima (like the quartic double–well potential), the problem has been completely solved. Some examples are described in Chapter 24. There, the perturbative, complete, hyper–asymptotic expansion exhibits the resurgence property. The perturbative expansion can be related to the calculation of the spectral equation via the complex WKB method.


2016 ◽  
Vol 25 (08) ◽  
pp. 1650059 ◽  
Author(s):  
Hluf Negash ◽  
Shashank Bhatnagar

In this paper, we calculate the mass spectrum, weak decay constants, two photon decay widths, and two-gluon decay widths of ground ([Formula: see text]) and radially excited ([Formula: see text]) states of pseudoscalar charmoniuum and bottomonium such as [Formula: see text] and [Formula: see text], as well as the mass spectrum and leptonic decay constants of ground state ([Formula: see text]), excited ([Formula: see text]) states of vector charmonium and bottomonium such as [Formula: see text], and [Formula: see text], using the formulation of Bethe–Salpeter equation under covariant instantaneous ansatz (CIA). Our results are in good agreement with data (where ever available) and other models. In this framework, from the beginning, we employ a [Formula: see text] representation for two-body ([Formula: see text]) BS amplitude for calculating both the mass spectra as well as the transition amplitudes. However, the price we have to pay is to solve a coupled set of equations for both pseudoscalar and vector quarkonia, which we have explicitly shown get decoupled in the heavy-quark approximation, leading to mass spectral equation with analytical solutions for both masses, as well as eigenfunctions for all the above states, in an approximate harmonic oscillator basis. The analytical forms of eigenfunctions for ground and excited states so obtained are used to evaluate the decay constants and decay widths for different processes.


2016 ◽  
Vol 2016 ◽  
pp. 1-39 ◽  
Author(s):  
V. O. Vakhnenko ◽  
E. J. Parkes

A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE) as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE), by a change of independent variables. The VPE has anN-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprisesN-loop-like solitons. Aspects of the inverse scattering transform (IST) method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads toN-soliton solutions andM-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.


Sign in / Sign up

Export Citation Format

Share Document