Casting Process Solutions Optimization of LFC Forklift Box

2014 ◽  
Vol 571-572 ◽  
pp. 1091-1096
Author(s):  
Guang Sheng Zhang ◽  
Fei Zhang

There are many advantages in producing forklift box through the LFC. However, we found shrinkage porosity defects in the interior of castings through simulating the original process by ProCAST casting simulation software. Therefore, we analyzed the defects and improved the technology program. firstly, increased riser in position of shrinkage, Secondly, changed the filling’s way, lastly, selected the best temperature and vacuum by the orthogonal experiment and determined the best technology solution. we found the shrinkage porosity defects have been removed by the improved process. We found the production consistent with the simulation results through verification. Therefore we verify the accuracy of the ProCAST.

2013 ◽  
Vol 690-693 ◽  
pp. 2236-2239
Author(s):  
Hai Bo Yang ◽  
Xing Sheng Zhao ◽  
Wei Zhong Fan ◽  
Xue Wen Chen ◽  
De Ying Xu

Using ProCast casting simulation software, the solidification process of the Aluminum Alloy steel casting was simulated according to its scene casting process, and the shrinkage porosity defect was forecasted. Based on the simulation, the casting technology was improved using the orthogonal test. An optimized plan was obtained, which provided a reference for the actual production of the casting.


2013 ◽  
Vol 312 ◽  
pp. 475-479
Author(s):  
Wei Gang Zheng ◽  
Cun Hong Yin ◽  
Yu Hong Yuan ◽  
Zhen Min Pan ◽  
Chao Tang

This paper analyzes traditional die casting process to find out the reasons that cause shrinkage cavity and porosity defects in casting. An optimized process of die casting by using local extrusion is proposed. A device used in local extrusion which realizes forcing compensating contraction on key parts of crankcase is designed and the parameters of local extrusion process are discussed. Compared the mechanical properties and microstructure of local extrusion used in die casting production with traditional. It shows that local extrusion used in die casting production can not only achieve the aim eliminating shrinkage porosity and cavity of a casting but also can refine grain to improve the mechanical properties.


2013 ◽  
Vol 803 ◽  
pp. 317-320
Author(s):  
Hai Bo Yang ◽  
Guang Liang Wang ◽  
Xue Wen Chen ◽  
De Ying Xu

Using the ProCast casting simulation software to make squeeze casting process simulation and analysis of the solidification process of the air conditioning compressor front cover and predict the location of gas volumes and shrinkage defects in the filling process. When adjusted the process parameters, volumes gas defects were eliminated, but there was still shrinkage occurs in the center. When imposed a secondary pressure on the central part, shrinkage was eliminated.


Author(s):  
Sarabjit Singh ◽  
Neeraj Sharma ◽  
Rajesh Khanna

The Reynolds number of molten metal flowing mold cavity causes bulk turbulence and is the main cause of defects like shrinkage porosity and sand erosion. Machined housings with shrinkage porosity at critical bearing bores and surface made the casting useless. In old gating casting areas of perimeters 290[Formula: see text]mm and 264[Formula: see text]mm of transmission housing, Reynolds numbers were observed as 16307 and 13806, respectively using simulation software. Data were collected from experiments to change casting area perimeters from 785[Formula: see text]mm and 785[Formula: see text]mm along with the addition of overlap area. New Reynolds numbers at two locations were observed as 3705 and 3393, respectively. Molten metal pressure, velocity and temperature results were related for final shrinkage results of the components on full production. The purpose of the study is to reduce shrinkage and porosity defects in green sand casting part using MAGMAS simulation software. High outcome was the reduction of casting machining rejection in transmission housing casting from 5.8% 0.7% with savings of approximately 0.13 million USD over the period of 14 months. Implications of this work include casting defects study and reduction in different grades and weight range.


2010 ◽  
Vol 139-141 ◽  
pp. 576-579
Author(s):  
Guo Fa Mi ◽  
Li Lin Chen ◽  
Hong Yan Nan

The V-method foundry is an advanced casting technology compared with traditional sand casting. The Pro/E software was used to generate three-dimensional model of cast parts. The solidification process of the automotive axle casting with V-method foundry was simulated by the numerical simulation software, ViewCast. The location and scale of the shrinkage defects caused by the original process were predicted. According to the simulation results, the position of the flange round cooled too fast, which blocked the feeding passage of the round near sprue. The reason was that solidifying sequence was unperfected. The casting process was optimized by means of adding runner and chill. Progressive solidification can be obtained and the shrinkage defects can be eliminated or transferred by the improved technology. The reasonable casting process was obtained and the process has been proofed by the productive practice.


2013 ◽  
Vol 313-314 ◽  
pp. 1130-1134 ◽  
Author(s):  
C.M. Choudhari ◽  
K.J. Padalkar ◽  
K.K. Dhumal ◽  
B.E. Narkhede ◽  
S.K. Mahajan

The use of Aluminum castings parts in the automotive industry has increased dramatically over the past few decades. The driving force for this increased use is vehicle weight reduction for improved performance. In many cases the mechanical properties of the cast aluminum parts are superior to those of the cast iron or wrought steel parts being used.This paper proposes the computer simulation of the sand casting of Aluminum Plate. It aims to study the behavior of fluid flow during mould filling and solidification and to optimize the process parameters, which help to predict and control casting defects such as gas porosity and shrinkage porosity. Here an attempt is being made to model and simulate the casting process using the AutoCAST software. The technological as well as practical aspects of using casting software are illustrated with an industrial case study.


2011 ◽  
Vol 704-705 ◽  
pp. 28-32
Author(s):  
Yan Jun Zhou ◽  
Ke Xing Song ◽  
Yan Min Zhang ◽  
Xiu Hua Guo

The Shrinkage and porosity of ZL101A alloy mechanism box prepared by sand gravity casting process was investigated. The solidification process was simulation analysis by using InteCAST software and the original casting process was optimized based on the above simulated results. The results showed that the shrinkage and porosity defects’ position of ZL101A alloy mechanism box were accurately predicted by the analysis procedure which was from liquid distribution to shrinkage formation and then to Niyama shrinkage porosity. The shrinkage and porosity of the ZL101A alloy mechanism box prepared by optimized process were clearly reduced and the distribution of them was reasonable. Keywords: InteCAST software;ZL101A; Mechanism box; Shrinkage and porosity; Numerical simulation


2014 ◽  
Vol 1004-1005 ◽  
pp. 1162-1165
Author(s):  
Bin Feng He

The traditional method has been used to the foundry technique for the melt block mobile plate. The pouring position,the parting face and some of the casting parameters were determined, such as the allowance for finish, stripping taper, the rate of shrinkage and soon on. The commercial casting simulation software was introduced into the casting process, the filling and solidification process were calculated by it. The results shown that there are some shrinkage exists in the original technique and the filling process were inordinate. The gating system was optimized and according to the simulation results, the shrinkages in the original technique were eliminated and the filling process is smoothly which could help the designer to make a correct determination.


2016 ◽  
Vol 16 (1) ◽  
pp. 61-68 ◽  
Author(s):  
S. Samavedam ◽  
S. Sundarrajan

Abstract US A356 and US 413 cast aluminium alloys shrinkage characteristic have been discussed in the present study. Specific volume reduction leads to shrinkage in castings and it can be envisaged as a casting defect. Finite difference based casting process simulation software has been used to study the shrinkage characteristic and it is quantified using mathematical formulae. The three dimensional model of the shrinkage defect has been constructed using CAD application software. Shrinkage characteristic has also been quantified through experimental validation studies and compared well with casting process simulation. Shrinkage characteristic study and control is essential for producing defect free castings. Influence of casting shape on the shrinkage characteristic has been studied in this paper.


2020 ◽  
Vol 993 ◽  
pp. 166-171
Author(s):  
Zi Kang Liu ◽  
Min Luo ◽  
Da Quan Li ◽  
Long Fei Li ◽  
Jian Feng

The shrinkage porosity that was caused by the insufficient feeding during solidification, was a common defect in the semi-solid die casting process. This defect decreased significantly the mechanical properties of the casting. In order to avoid the shrinkage porosity in casting, the die design, slug preparation and die casting process were carefully considered. In this study, a designed mold was used to make the sequential solidification of the slug. The process parameters, including intensification pressure, die temperature and biscuit thickness of the casting, were studied to show their influence on shrinkage porosity defects. The experimental results show that the high intensification pressure, high die temperature and long biscuit can be beneficial to obtain castings with no shrinkage porosity.


Sign in / Sign up

Export Citation Format

Share Document