Reliability Analysis Based on Markov Process for Repairable Systems

2014 ◽  
Vol 571-572 ◽  
pp. 241-244 ◽  
Author(s):  
Xiao Quan Li ◽  
Run Ling Li ◽  
Yi Jing Xie

The problems of reliability and maintainability for repairable systems are investigated in this paper, and Markov process is employed to build the mathematical models of availability and reliability for the repairable systems. Firstly, the formulas of availability and reliability for single repairable systems are deduced. Then, the repairable system with two parallel components and one standby are investigated, which is common in engineering application. Finally, simple approaches are summarized for availability of complicated repairable systems. Since the two approaches has the same result, which provides theoretical proof for the study of repairable systems’reliability and availability.

Author(s):  
Xiao-Jian Yi ◽  
Jian Shi ◽  
Hai-Ping Dong ◽  
Yue-Hua Lai

This paper provides a new goal-oriented (GO) method for reliability analysis of repairable systems with multiple fault modes. First, formulas of operators describing components with multiple fault modes are derived based on Markov process theory. Second, qualitative reliability analysis of such a system is conducted by combining the existing GO method with the Fussell–Vesely method. Third, this new method is applied in reliability analysis of a hydraulic transmission oil supply system. Finally, comparing the study results with fault tree analysis (FTA) and Monte Carlo simulation shows that this new GO method is suitable for reliability analysis of repairable systems with multiple fault modes.


Author(s):  
Yi Xiao-Jian ◽  
Shi Jian ◽  
Dong Hai-Ping ◽  
Lai Yue-Hua

GO methodology is a success-oriented method for system reliability analysis. There are components with multiple fault modes in repairable systems. It is a problem to use the existing GO method to make reliability analysis of such repairable systems. A new GO method for reliability analysis of such repairable systems with multiple fault modes is presented in this paper. For quantitative reliability analysis of repairable system, formulas of reliability parameters of operators which are used to describe components with multiple fault modes in reparable systems are derived based on Markov process theory. Qualitative reliability analysis of repairable systems with multiple fault modes is conducted by combining the existing GO method with Fussell-Vesely method. This new GO method is applied for the first time in reliability analysis of a Hydraulic Transmission Oil Supply System (HTOSS) of a Power-Shift Steering Transmission under high speed condition. Firstly, the operator type and fault modes of each component are determined through systematic analysis. Secondly, GO model of the system is built. And availability of each component is computed with the above equations deduced in this paper. Then, success probability of the system is calculated respectively by the direct algorithm, modified algorithm with shared signals and exact algorithm with shared signals. And all system minimum cut sets containing all fault modes are obtained by using the new GO method. Finally, Compared with Fault Tree Analysis and Monte Carlo simulation, the results show that this new GO method is correct and suitable for reliability analysis of repairable systems with multiple fault modes.


Author(s):  
Xiaojian Yi ◽  
Jian Shi ◽  
Huina Mu ◽  
Haiping Dong ◽  
Zhong Zhang

GO methodology is a success-oriented method for system reliability analysis. There are Multiple-Input, which contain control signal, oil provided and electrical signal et.al and MultiFunction Components (MIMFC) in some repairable systems, such as double-action variable displacement pump, multiple directional control valve, and hydraulic coupler etc. Because existing 17 basic GO operators in GO methodology can’t describe these MIMFCs accurately, it is a problem to adopt existing GO methodology to conduct the reliability analysis for these systems with MIMFC. In this paper, firstly a new GO operator combination, which is composed of a new function GO operator and a new auxiliary GO operator, is created to represent MIMFC. The new function GO operator named as Type 22 operator is created to represent MIMFC itself, and the auxiliary GO operator named as Type 15B operator is created to represent multi-conditions control signals of MIMFC. Then, quantitative calculation formulas of new GO operator combination are derived based on logical relationships among inputs, outputs, and component itself. Thirdly, this new GO operator combination is applied for the first time in steady availability analysis and qualitative analysis of the fan drive system of a Power-shift Steering Transmission. Finally, the results obtained by the method in this paper are compared with the result of Fault Tree Analysis (FTA) and result of Monte Carlo simulation, and the comparison results show that this new GO operator combination is usable and correct for reliability analysis of repairable system with MIMFC, and it has more advantageous in the aspects of building system model and quantitative analysis. Meantime, this paper provides guidance for reliability analysis of other repairable systems with MIMFC.


G.Sarithaet al.,International Journal of Advanced Trends in Computer Science and Engineering, 10(1), January –February 2021, 340 -344340ABSTRACTAvailability depends on both reliability and maintainability. To predict systemavailability, both the failure and repair probability must be considered. Markov process is employed to build the Mathematical models of reliability and availability for the repairable systems. In this paper, availability is computed for repairable systemconsisting of 4-components by using Markov process.


Author(s):  
Bingfeng Zhao ◽  
Liyang Xie ◽  
Yu Zhang ◽  
Jungang Ren ◽  
Xin Bai ◽  
...  

As the power source of an aircraft, aero-engine tends to meet many rigorous requirements for high thrust-weight ratio and reliability with the continuous improvement of aero-engine performance. In this paper, based on the order statistics and stochastic process theory, an improved dynamic load-strength interference (LSI) model was proposed for the reliability analysis of aero-engine rotor blade system, with strength degradation and catastrophic failure involved. In presented model, the “unconventional active” characteristic of rotor blade system, changeable functioning relationships and system-component configurations, was fully considered, which is necessary for both theoretical analysis and engineering application. In addition, to reduce the computation cost, a simplified form of the improved LSI model was also built for convenience of engineering application. To verify the effectiveness of the improved model, reliability of turbojet 7 engine rotor blade system was calculated by the improved LSI model based on the results of static finite element analysis. Compared with the traditional LSI model, the result showed that there were significant differences between the calculation results of the two models, in which the improved model was more appropriate to the practical condition.


2004 ◽  
Vol 36 (1) ◽  
pp. 116-138 ◽  
Author(s):  
Yonit Barron ◽  
Esther Frostig ◽  
Benny Levikson

An R-out-of-N repairable system, consisting of N independent components, is operating if at least R components are functioning. The system fails whenever the number of good components decreases from R to R-1. A failed component is sent to a repair facility. After a failed component has been repaired it is as good as new. Formulae for the availability of the system using Markov renewal and semi-regenerative processes are derived. We assume that either the repair times of the components are generally distributed and the components' lifetimes are phase-type distributed or vice versa. Some duality results between the two systems are obtained. Numerical examples are given for several distributions of lifetimes and of repair times.


2015 ◽  
Vol 32 (7) ◽  
pp. 2505-2517 ◽  
Author(s):  
Xiao-jian Yi ◽  
B.S. Dhillon ◽  
Jian Shi ◽  
Hui-na Mu ◽  
Hai-ping Dong

Sign in / Sign up

Export Citation Format

Share Document