Experimental Study of Parameter for Turning GFRP Using Coated Tool

2014 ◽  
Vol 573 ◽  
pp. 655-658
Author(s):  
P. Marimuthu ◽  
P. Raveendran

Glass fiber reinforced polymers (GFRP) have been used in variety of engineering applications, owing its corrosive resistance property. Machining of GFRP material is difficult to carry out due to the non homogenous structure of material. Optimization of parameters is essential for achieve the quality of product. In this paper, Turning parameter optimization is studied for machining GFRP under dry conditions using coated tool. Single response optimization is performed by Taguchi method.

2015 ◽  
Vol 105 (07-08) ◽  
pp. 501-507
Author(s):  
L. Heberger ◽  
S. Nissle ◽  
M. Gurka ◽  
B. Kirsch ◽  
J. C. Aurich

Beim Bohren von kohlefaserverstärktem Kunststoff treten verstärkt Schädigungen wie Delaminationen und Faserüberstände auf. Mit dem Ziel die Bohrlochqualität zu verbessern, wurde der Einfluss der Werkstückeinspannung hinsichtlich Einspanngeometrie, -kraft und -material untersucht. Zusätzlich zur konventionellen optischen Delaminationsmessung wurde die äußere und die innere Delamination mittels Mikrocomputertomografie analysiert. Durch eine Optimierung der Einspannung konnte die Bohrlochqualität gesteigert werden.   When drilling carbon fiber reinforced polymers damages like delamination and fiber protrusion appear. Aiming to improve the drill hole quality, the influence of the fastening device with respect to fastening geometry, force and material is analyzed. In addition to the conventional optical delamination measurement, the outer and inner delamination is investigated by micro computer tomography. The optimization of the fastening device leads to a higher drill hole quality.


2017 ◽  
Vol 165 ◽  
pp. 65-73 ◽  
Author(s):  
Davi M. Montenegro ◽  
Francesco Bernasconi ◽  
Markus Zogg ◽  
Matthias Gössi ◽  
Rafael Libanori ◽  
...  

2014 ◽  
Vol 900 ◽  
pp. 449-454
Author(s):  
Giosuè Boscato

The present work proposes and analyses the solution for seismic behaviour of GFRP (Glass Fiber Reinforced Polymers) applications to evaluate the performances respect to dynamic actions considering the global effect on historical structures. The good strength-self-weight relationship defines the GFRP pultruded profile as an efficacious and innovative solution for structural rehabilitation of historical buildings. The composite material with polymeric matrix, FRP (Fiber Reinforced Polymers), is widely used in civil engineering as sheets, bars and strips. Recently a new technology was adopted to improve the structural response with limited increment of dead load with reversible and independent solution.


2013 ◽  
Vol 4 (4) ◽  
pp. 28-34
Author(s):  
Uwe Klaeger ◽  
Ulrich Schmucker ◽  
Veikko Galazky

Abstract Rapidly rotating systems such as centrifuges are widely used in medicine and laboratories to efficiently separate different constituents of liquids. Rotors, which hold sample containers, are an essential part of centrifuges. Since they are subjected to extreme mechanical loads, rotors are one of a centrifuge’s core safety components. Their deficits served as the point of departure for the development of a novel manufacturing technology, which is based on carbon fiber-reinforced polymers (CFRP). Its supporting structure is entirely in the loading plane, thus enabling the rotor to absorb higher centrifugal forces while requiring the same amount of material. The new design concept for the load-bearing structure includes a geodesically molded annular support member. It transmits forces better than present products and increases rigidity. In order to eliminate the known problems with obtaining the necessary manufacturing quality of hollow fiber composite bodies, the authors developed the process of centrifugal infusion. Their proposed solution is based on generating higher gravitation forces, thus effectively eliminating detrimental gas pockets and simultaneously optimizing surface quality and impregnation.


2017 ◽  
Vol 742 ◽  
pp. 714-722
Author(s):  
Joseph Goldmann ◽  
Markus Kaestner ◽  
Volker Ulbricht

The present contribution aims to investigate the ability of drawing predictive conclusions from homogenization in case of damage. Therefor, two topics will be addressed. On the one hand, material properties for the constituents on the microscale have to be derived, to render a predictive homogenization possible. The investigation at hand is concerned with glass fiber reinforced epoxy resin. In this example the properties of the fiber and the matrix have to be studied individually by experiments. Furthermore, the interface between both materials needs to be examined. To this end experiments on several models of single fiber composites have been developed in the literature. For the present material combination single fiber fragmentation tests and pullout tests have been conducted and evaluated. On the other hand, boundary conditions are necessary, that allow for the strain localization in a volume element without leading to spurious localization zones.


APT Bulletin ◽  
2004 ◽  
Vol 35 (4) ◽  
pp. 27
Author(s):  
Samer H. Petro ◽  
Emory L. Kemp ◽  
Hota V. S. Gangarao

Sign in / Sign up

Export Citation Format

Share Document