Dynamic Characteristics Analysis of Steam Generator Tube of Nuclear Power Plant by Finite Elements

2014 ◽  
Vol 577 ◽  
pp. 149-153
Author(s):  
Shuang Jiang ◽  
Jun Cai ◽  
Jing Wei Zhang ◽  
Qiao Zhi Sun ◽  
Xin Guo ◽  
...  

In nuclear power plants, the steam generator heat transfer tube is the weakest part of the primary circuit pressure boundary. Flow induced vibration is one of the main reasons for the failure of the heat transfer tube. In this paper, an ANSYS finite element software is used to carry out the modal analysis of the heat transfer tube, and to simulate the dynamic response of the heat transfer tube in the harmonic load based on the modal analysis.

2013 ◽  
Vol 441 ◽  
pp. 295-299 ◽  
Author(s):  
Shuang Jiang ◽  
Jun Cai ◽  
J.W. Zhang ◽  
Y.D. Wang

The steam generator is operated under the pressure of 15.5MPa and the temperature 327°C. Under this working condition the junction of the heat transfer tube and tube-sheet is accident-prone areas of the steam generator. By using ANSYS to carry out a thermal structure coupling analysis on the junction, it is found that a large tensile stress along axial and tangential directions occurs on outer surface of the heat transfer tube and is located at the region of 2.0 mm to 6.0 mm high over the tube-sheet. The stress attributes to the rapidly change of temperature on the tube outer surface and leads to the stress corrosions.


Author(s):  
Jun Huang ◽  
Junli Gou ◽  
Haifu Ma ◽  
Jie Fan ◽  
Jianqiang Shan

Due to their advantages, such as compactness and high efficiency in heat transfer, helically coiled heat exchangers have been widely used by different type of nuclear power plants, especially by small and medium size reactors (SMRs). In order to analyze the thermal-hydraulic characteristics of a helical coiled once through steam generator (OTSG) for a small integral pressurized water reactor, a computer code is developed in this paper. The code is based on two-fluid model. The constitutive correlations are recommended based on the assessments with the compiled databases from the reviewed literatures. NUSOL SG is validated and verified against heat transfer in helical coiled tubes, and the calculation results agree well with the experiment data. The present study could provide references for the investigators to perform further investigations on the thermal hydraulic characteristics of helical coiled OTSGs.


Author(s):  
Xuan Huang ◽  
Huan-Huan Qi ◽  
Feng-Chun Cai ◽  
Zhi-Peng Feng ◽  
Shuai Liu

The heat transfer tube of steam generator is an important part of the primary loop boundary, the integrity is crucial to the safe operation of the whole reactor system; the flow induced vibration is one of the main factors leading to the failure of heat transfer tube in steam generator. Both ASME and RG1.20 have made a clear requirement for the analysis and evaluation of the flow induced vibration of steam generator. The flow induced vibration of heat transfer tube in two-phase flow is the difficult and important content in the analysis. In this paper, the finite element model of heat transfer tube is established and the modal analysis is carried out. Then in order to evaluate the influence of two-phase flow in the secondary side and support boundary constraint, the analytical results are compared with the natural frequencies of the heat transfer tube measured in the two-phase flow test. On the basis of accurate simulation of the dynamic characteristics of heat transfer tube in two-phase flow, the paper calculate the turbulent excitation response and the fluidelastic instability ratio aiming at the main mechanism causing the flow induced vibration of heat transfer tube in two-phase flow. Firstly, the modified PSD of turbulent excitation is proposed on the foundation of root mean square displacement amplitude of heat transfer tube measured in two-phase flow test. The calculation result of the amplitude of heat transfer tube with different void fraction can envelope the test result by using the modified PSD as input, and the safety margin is reasonable. Then we also verify whether the analysis conclusion of fluidelastic instability is in agreement with the test. Finally, the analytical technique is applied to the analysis of flow induced vibration of steam generator to verify the design of structure. The paper studies on flow induced vibration analysis and evaluation a heat transfer tube of steam generator in two-phase flow. The analysis program of flow induced vibration on the basis of the test results. The investigation can be used for the risk prediction and evaluation of flow induced vibration of heat transfer tube in two-phase flow, solve the technical difficulties of flow induced vibration analysis in two-phase flow, and provide the technical support for the flow induced vibration analysis of steam generator.


2020 ◽  
Vol 7 (6) ◽  
pp. 803-815
Author(s):  
Xiao Chen ◽  
Xing He ◽  
Lichen Tang ◽  
Yuebing Li ◽  
Mingjue Zhou ◽  
...  

Abstract The heat transfer tube is one of the most essential components of the nuclear power plant as the boundary between the first and second circuit pressures. The wear between the heat transfer tube and the support plate or the anti-vibration strip is one of the essential reasons for its failure. Based on a heat transfer tube wear analysis method, combined with the reliability analysis theory, the calculation scheme of tube wear failure probability is proposed in this paper. In the analysis and calculation process, the key factors affecting the reliability are determined, including the baffle thickness B and the aperture difference Ce. In the manufacturing process, these key factors can be controlled, which is instructive for engineering practice.


2009 ◽  
Vol 167 (1) ◽  
pp. 118-126 ◽  
Author(s):  
Akira Yamaguchi ◽  
Takashi Takata ◽  
Hiroyuki Ohshima ◽  
Akikazu Kurihara

Author(s):  
Kosuke Ono ◽  
Yasunori Yamamoto ◽  
Masayoshi Mori ◽  
Tetsuya Takada

Abstract Isolation condensers (ICs) are important passive cooling systems in BWRs. After the Fukushima Daiichi Nuclear Power Station accident, concerns if the IC was able to restart with the inflow of hydrogen were arose. Because ICs lose heat removal ability when non-condensable gas inflow occurs, accurate evaluation of the effect is necessary. To develop analysis methods, as an initial stage, experiments and analyses considering only high-pressure steam and water were conducted. The experiment was done by an isolation condenser simulator which contains an accumulator with heaters inside, and a heat transfer tube. From the experiment, all steam was condensed at the heat transfer tube and the approximate position of complete condensation was confirmed from the temperature distribution and the observation. The experiment provided data such as temperature distribution, natural circulation flow rate, and pressure to compare with the analysis. The analyses were conducted for 4 cases of void fraction values at the heat transfer tube inlet and found that it has a high sensitivity to condensation. The reason is estimated to be the difference in inflow velocity that strongly depends on the void fraction even if the mass flow rate is constant. And the initial condition of the liquid film also affected condensation process. Heat removal at the section before the heat transfer tube should be considered to adjust void fraction at the inlet of heat transfer tube.


Sign in / Sign up

Export Citation Format

Share Document