Finite Element Analysis of Deep Elliptical Submersible Pressure Hull Subjected to a Side-On Non-Contact Underwater Explosion

2014 ◽  
Vol 578-579 ◽  
pp. 256-262 ◽  
Author(s):  
Fathallah Elsayed ◽  
Li Li Tong ◽  
Hui Qi ◽  
Mahmoud Helal

Predicting the dynamic response of a floating and submerged structure subjected to underwater explosion is greatly complicated by the explosion of a high explosive, propagation of shock wave, bubble-pulse, complex fluid-structure interaction phenomena and the dynamic behavior of the floating structures. A numerical simulation has been carried out to examine the behavior of elliptical submersible pressure hull to non-contact underwater explosion (UNDEX) and take the effect of bubble-pulse. The finite element package ABAQUS was used to model the UNDEX and the fluid-structure interaction (FSI) phenomena. The pressure wave resulting from an UNDEX was assumed to be a spherical wave. Plastic strain and the time histories of the wet-surface displacement, velocity and von Mises stress are presented. The analytical results are valuable for designing underwater vehicles to resist UNDEX.

2014 ◽  
Vol 91 ◽  
pp. 37-42 ◽  
Author(s):  
Alexander M. Belostosky ◽  
Pavel A. Akimov ◽  
Taymuraz B. Kaytukov ◽  
Irina N. Afanasyeva ◽  
Anton R. Usmanov ◽  
...  

2016 ◽  
Vol 33 (8) ◽  
pp. 2504-2529 ◽  
Author(s):  
Babak Lotfi ◽  
Bengt Sunden ◽  
Qiu-Wang Wang

Purpose The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver. Design/methodology/approach A three-dimensional FSI approach is proposed in this paper to provide better understanding of the performance of the VG structures in SWFET heat exchangers associated with the alloy material properties and geometric factors. The Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are applied for modeling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the VGs region. Findings Parametric studies conducted in the course of this research successfully identified illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the VGs and depends on geometrical parameters and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminum alloy VGs. Originality/value This paper is one of the first in the literature that provides original information mechanical behavior of a SWFET heat exchanger model with new VGs in the field of FSI coupling technique.


Author(s):  
Esfandyar Kouhi ◽  
Yos Morsi

In this paper the fluid structure interaction in stentless aortic heart valve during acceleration phase was performed successfully using the commercial ANSYS/CFX package. The aim is to provide unidirectional coupling FSI analysis of physiological blood flow within an anatomically corrected numerical model of stentless aortic valve. Pulsatile, Newtonian, and turbulent blood flow rheology at aortic level was applied to fluid domain. The proposed structural prosthesis had a novel multi thickness leaflet design decreased from aortic root down to free age surface. An appropriate interpolation scheme used to import the fluid pressure on the structure at their interface. The prosthesis deformations over the acceleration time showed bending dominant characteristic at early stages of the cardiac cycle. More stretching and flattening observed in the rest of the times steps. The multi axial Von Mises stress data analysis was validated with experimental data which confirmed the initial design of the prosthesis.


Author(s):  
Minyan Yin ◽  
Jun Li ◽  
Liming Song ◽  
Zhenping Feng

The aerodynamic and mechanical performance of the last stage was numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solution and Finite Element Analysis (FEA) coupled with the one-way and two-way fluid-structure interaction models in this work. The part-span damping snubber and tip damping shroud of the rotor blade and aerodynamic pressure on rotor blade mechanical performance was considered in the one-way model. The two-way fluid-structure interaction model coupled with the mesh deformation technology was conducted to analyze the aerodynamic and mechanical performance of the last stage rotor blade. One-way fluid-structure interaction model numerical results show that the location of nodal maximum displacement moves from leading edge of 85% blade span to the trailing edge of 85% blade span. The position of nodal maximum Von Mises stress is still located at the first tooth upper surface near the leading edge at the blade root of pressure side. The two-way fluid-structure interaction model results show that the variation of static pressure distribution on long blade surface is mostly concentrated at upper region, absolute outflow angle of long blade between the 40% span and 95% span reduces, the location of nodal maximum displacement appears at the trailing edge of 85% blade span. Furthermore, the position of nodal maximum Von Mises stress remains the same and the value decreases compared to the oneway fluid-structure model results.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1467 ◽  
Author(s):  
Rajendra Roul ◽  
Awadhesh Kumar

The interaction of a flexible system with a moving fluid gives rise to a wide variety of physical phenomena with applications in various engineering fields, such as aircraft wing stability, arterial blood progression, high structure reaction to winds, and turbine blade vibration. Both the structure and fluid need to be modeled to understand these physical phenomena. However, in line with the overall theme of this strength, the focus here is to investigate wind turbine aerodynamic and structural analysis by combining computational fluid dynamics (CFD) and finite element analysis (FEA). One-way coupling is chosen for the fluid-structure interaction (FSI) modeling. The investigation is carried out with the use of commercialized ANSYS applications. A total of eight different wind velocities and five different angles of pitch are considered in this analysis. The effect of pitch angles on the output of a wind turbine is also highlighted. The SST k-ω turbulence model has been used. A structural analysis investigation was also carried out and is carried out after importing the pressure load exerted from the aerodynamic analysis and subsequently finding performance parameters such as deformation and Von-Mises stress.


Sign in / Sign up

Export Citation Format

Share Document