Improvement of Impact Resistance of Synthetic Macro-Fiber Reinfored Concrete

2014 ◽  
Vol 578-579 ◽  
pp. 501-504
Author(s):  
Guo Chao Wang ◽  
Bo Xin Wang

The incorporation of a small amount of steel fibers or fine polypropylene fibers in concrete can increase its impact resistance. But steel fiber has the problems of corrosion, high cost and high mess. The effect of fine polypropylene fibers in inhibiting the impact crack is not effective. The research was taken to measure the properties of fresh concrete mixture of Synthetic Macro-fiber reinforced concrete. And investigated the influence of fiber length and volume fraction on the impact resistance of Synthetic Macro-fiber reinforced concrete. The results showed that these fibers could obviously improve the impact resistance of concrete. There was a best Synthetic Macro-fiber volume fraction. The length of the Synthetic Macro-fiber had a certain influence on the impact resistance of concrete.

2010 ◽  
Vol 163-167 ◽  
pp. 3569-3574
Author(s):  
Hong Qiang Cheng ◽  
Dan Ying Gao

Shrinkage experiments were done to determine the influence of the volume fraction of steel fiber-reinforcement on the bonding behavior between new concrete and old concrete. The mechanics of the model of restricted shrinkage upon the adherence of new steel fiber reinforced concrete to old concrete are described. The results demonstrate that the difference of shrinkage between the new and the old concrete can been reduced by adding steel fiber to the new concrete. The decrease of shrinkage difference reduces the shrinkage force at the adhesive interface, which improves the adhesion of new concrete to old concrete and the magnitude of the decrease of shrinkage difference is correlated to the steel fiber volume fraction.


2006 ◽  
Vol 33 (6) ◽  
pp. 726-734 ◽  
Author(s):  
Fariborz Majdzadeh ◽  
Sayed Mohamad Soleimani ◽  
Nemkumar Banthia

The purpose of this study was to investigate the influence of fiber reinforcement on the shear capacity of reinforced concrete (RC) beams. Both steel and synthetic fibers at variable volume fractions were investigated. Two series of tests were performed: structural tests, where RC beams were tested to failure under an applied four-point load; and materials tests, where companion fiber-reinforced concrete (FRC) prisms were tested under direct shear to obtain material properties such as shear strength and shear toughness. FRC test results indicated an almost linear increase in the shear strength of concrete with an increase in the fiber volume fraction. Fiber reinforcement enhanced the shear load capacity and shear deformation capacity of RC beams, but 1% fiber volume fraction was seen as optimal; no benefits were noted when the fiber volume fraction was increased beyond 1%. Finally, an equation is proposed to predict the shear capacity of RC beams.Key words: shear strength, fiber-reinforced concrete, RC beam, stirrups, energy absorption capacity, steel fiber, synthetic fiber.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Pitcha Jongvivatsakul ◽  
Linh V. H. Bui ◽  
Theethawachr Koyekaewphring ◽  
Atichon Kunawisarut ◽  
Narawit Hemstapat ◽  
...  

In this paper, the performances of reinforced concrete (RC) beams strengthened in shear with steel fiber-reinforced concrete (SFRC) panels are investigated through experiment, analytical computation, and numerical analysis. An experimental program of RC beams strengthened by using SFRC panels, which were attached to both sides of the beams, is carried out to investigate the effects of fiber volume fraction, connection type, and number and diameter of bolts on the structural responses of the retrofitted beams. The current shear resisting model is also employed to discuss the test data considering shear contribution of SFRC panels. The experimental results indicate that the shear effectiveness of the beams strengthened by using SFRC panels is significantly improved. A three-dimensional (3D) nonlinear finite element (FE) analysis adopting ABAQUS is also conducted to simulate the beams strengthened in shear with SFRC panels. The investigation reveals the good agreement between the experimental and analytical results in terms of the mechanical behaviors. To complement the analytical study, a parametric study is performed to further evaluate the influences of panel thickness, compressive strength of SFRC, and bolt pattern on the performances of the beams. Based on the numerical and experimental analysis, a shear resisting model incorporating the simple formulation of average tensile strength perpendicular to the diagonal crack of the strengthened SFRC panels is proposed with the acceptable accuracy for predicting the shear contribution of the SFRC system under various effects.


2013 ◽  
Vol 372 ◽  
pp. 223-226 ◽  
Author(s):  
Seok Joon Jang ◽  
Yeon Jun Yun ◽  
Hyun Do Yun

The effects of aggregate size and fiber volume fraction on the flexural behavior of 70MPa high strength steel fiber-reinforced concrete (SFRC) were investigated in this work. Test variables consist of fiber volume fraction (0, 1 and 2 %) and maximum aggregate size (8, 13 and 20 mm). The prism for flexural test was 100 x 100 x 400 mm and was tested under four points loading. Flexural toughness index was measured using ASTM C 1018 procedure. Test results indicated that the addition of steel fiber to 70MPa high strength concrete improves flexural and post-cracking behaviors. This phenomenon is remarkable for SFRC mixture with higher fiber content and smaller aggregate size. Also, the flexural toughness of high strength SFRC depends primarily on fiber content. The maximum aggregate sizes were secondary in importance.


Sign in / Sign up

Export Citation Format

Share Document