Two-Dimensional Finite Element Analysis of Laboratory Seawall Model

2014 ◽  
Vol 580-583 ◽  
pp. 2134-2140
Author(s):  
Jian Zhang ◽  
Jian Feng Zhai ◽  
Xian Mei Wang ◽  
Jie Chen

Two-Dimensional finite element analysis was used to investigate the performance of seawall construction over weak subgrade soil using artificial base layer material consisted of cemented sand cushion comprising geosynthetics materials. Two types of base layer materials pure sand and cemented sand comprising husk rich ash and two types of geosynthetics materials geogrid and geotextile were used. Constitutive models were used to represent different materials in numerical analysis. The competence of two-dimensional numerical analysis was compared with experimental results. Numerical results showed a superior harmony with the experimental results. Finite element analysis model proved to be a great tool to determine the parameters that are difficult to measure in laboratory experiments. In addition, finite element analysis has the benefit of cost and time saving when compared to experimental investigation work. Numerical results showed strain induced in geosynthetics eliminated beyond a distance approximately equal six times of footing width.

2009 ◽  
Vol 16-19 ◽  
pp. 1248-1252
Author(s):  
Chun Dong Zhu ◽  
Man Chun Zhang ◽  
Lin Hua

As an important forged part of an automobile, the inner hole of the half-shaft bushing must be formed directly. However, the process requires many steps, and how the forging, or deformation, is spread over the production steps directly affects the die life and forging force required. In this paper, the three steps involved in directly forging a half shaft bushing's inner hole are simulated using the two-dimensional finite element method. Further more, we improve the forging process. From numerical calculation, the improved necessary forging force is found to be only half the original force, and the die life is doubled.


2011 ◽  
Vol 474-476 ◽  
pp. 807-810 ◽  
Author(s):  
Xiao Cong He

This paper deals with the effects of bending and boundary condition on the stress distribution of a single-lap adhesive joint under tension using the three-dimensional finite element analysis technique. The numerical results obtained from the finite element analysis show that both the left and right hand regions of the adhesive layer are subjected to high stresses. The numerical results also show that most of the extreme stresses occur at interface which is between the adhesive and the upper adherend. It is clear that the stresses are concentrated near the left and right free ends of the adhesive layer while the centre region of the adhesive layer is mostly stress-free. It is also clear that the stress state in this case is mainly dominated by the normal stress components.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3890-3895 ◽  
Author(s):  
CHOON YEOL LEE ◽  
JOON WOO BAE ◽  
BYUNG SUN CHOI ◽  
YOUNG SUCK CHAI

The structural integrity of steam generators in nuclear power plants is very much dependent upon the fretting wear characteristics of Inconel 690 U-tubes. In this study, a finite element analysis was used to investigate fretting wear on the secondary side of the steam generator, which arises from flow-induced vibrations (FIV) between the U-tubes and supports or foreign objects. Two-dimensional and three-dimensional finite element analyses were adopted to investigate the fretting wear problems. The purpose of the two-dimensional analysis, which simulated the contact between a punch and a plate, was to demonstrate the validity of using finite element analysis to analyze fretting wear problems. This was achieved by controlling the value of the wear constant and the number of cycles. The two-dimensional solutions obtained from this study were in good agreement with previous results reported by Strömberg. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate tubes contacting at right angles. The results of the analyses showed donut-shaped wear along the contacting boundary, which is a typical feature of fretting wear.


Sign in / Sign up

Export Citation Format

Share Document