An Improved Flutter Analytical Method for Bridge

2014 ◽  
Vol 587-589 ◽  
pp. 1468-1472
Author(s):  
Guo Fang Chen ◽  
Wei Xu ◽  
Bao Chu Yu

With the help of the commercial FE package ANSYS, this paper presents a finite element (FE) model for analyzing coupled flutter of long-span bridges. This model models the aero-elastic forces acting on the bridge utilizing a specific user-defined element Matrix27 in ANSYS, by which stiffness and damping matrices can be expressed in terms of the reduced wind velocity and flutter derivatives. Taking advantage of this FE model, Transient dynamic analysis is carried out to determine the dynamic response of a structure under the action of pulse load, of which the damping ratio can be obtained by considering response peaks which are several cycles apart. The condition for onset of flutter instability turns into that, at a certain wind velocity, the structural system incorporating fictitious Matrix27 elements does simple harmonic vibration with zero damping ratios or near zero one. The damping ratio is completely calculated in post-analysis of ANSYS and the initial frequency is given by any value and the last frequency can be got by iterating several times. In order to validate the developed procedure, a classical case study on three hundred meter simple supported beam is provided.

2005 ◽  
Vol 05 (04) ◽  
pp. 641-664 ◽  
Author(s):  
CHUNXIANG LI ◽  
Q. S. LI

The lever-type multiple tuned mass dampers (LT-MTMD), consisting of several lever-type tuned mass dampers (LT-TMDs) with a uniform distribution of natural frequencies, are proposed for the vibration control of long-span bridges. Using the analytical expressions for the dynamic magnification factors (DMF) of the LT-MTMD structure system, an evaluation, with inclusion of the LT-MTMD stroke, is conducted on the performance of the LT-MTMD with identical stiffness and damping coefficients but unequal masses for mitigating harmonically forced vibrations. The LT-MTMD is found to possess the near-zero optimum average damping ratio regimen when the total number of dampers exceeds a certain value. In comparison, the LT-MTMD without the near-zero optimum average damping ratio and the traditional hanging-type multiple tuned mass dampers (HT-MTMD) without the near-zero optimum average damping ratio can achieve approximately the same optimum frequency spacing (an indicator for robustness), effectiveness, and stroke. Compared with the HT-MTMD, the LT-MTMD needs lesser optimum average damping ratio but significantly higher optimum tuning frequency ratio. Its main advantage is that the static stretching of the spring may be adjusted to meet the practical requirements through the support movement, while maintaining the same robustness, effectiveness, and stroke. Consequently, the LT-MTMD is a better choice for suppressing the vibration of long-span bridges as the static stretching of the spring required is not large.


2018 ◽  
Vol 22 (6) ◽  
pp. 1255-1265 ◽  
Author(s):  
Yongle Li ◽  
Chuanjin Yu ◽  
Xingyu Chen ◽  
Xinyu Xu ◽  
Koffi Togbenou ◽  
...  

A growing number of long-span bridges are under construction across straits or through valleys, where the wind characteristics are complex and inhomogeneous. The simulation of inhomogeneous random wind velocity fields on such long-span bridges with the spectral representation method will require significant computation resources due to the time-consuming issues associated with the Cholesky decomposition of the power spectrum density matrixes. In order to improve the efficiency of the decomposition, a novel and efficient formulation of the Cholesky decomposition, called “Band-Limited Cholesky decomposition,” is proposed and corresponding simulation schemes are suggested. The key idea is to convert the coherence matrixes into band matrixes whose decomposition requires less computational cost and storage. Subsequently, each decomposed coherence matrix is also a band matrix with high sparsity. As the zero-valued elements have no contribution to the simulation calculation, the proposed method is further expedited by limiting the calculation to the non-zero elements only. The proposed methods are data-driven ones, which can be applicable broadly for simulating many complicated large-scale random wind velocity fields, especially for the inhomogeneous ones. Through the data-driven strategies presented in the study, a numerical example involving inhomogeneous random wind velocity field simulation on a long-span bridge is performed. Compared to the traditional spectral representation method, the simulation results are with high accuracy and the entire simulation procedure is about 2.5 times faster by the proposed method for the simulation of one hundred wind velocity processes.


2020 ◽  
pp. 107754632094615
Author(s):  
Yanguo Sun ◽  
Yongfu Lei ◽  
Ming Li ◽  
Haili Liao ◽  
Mingshui Li

As flutter is a very dangerous wind-induced vibration phenomenon, the mitigation and control of flutter are crucial for the design of long-span bridges. In the present study, via a large number of section model wind tunnel tests, the flutter performance of a superlong-span suspension bridge with a double-deck truss girder was studied, and a series of aerodynamic and structural measures were used to mitigate and control its flutter instability. The results show that soft flutter characterized by a lack of an evident divergent point occurred for the double-deck truss girder. Upper central stabilizers on the upper deck, lower stabilizers below the lower deck, and horizontal flaps installed beside the bottoms of the sidewalks are all effective in suppressing flutter for this kind of truss girder. By combining the structural design with aerodynamic optimizations, a redesigned truss girder with widened upper carriers and sidewalks, and double lower stabilizers combined with the inspection vehicle rails is identified as the optimal flutter mitigation scheme. It was also found that the critical flutter wind speed increases with the torsional damping ratio, indicating that the dampers may be efficient in controlling soft flutter characterized by single-degree-of-freedom torsional vibration. This study aims to provide a useful reference and guidance for the flutter design optimization of long-span bridges with double-deck truss girders.


2001 ◽  
Vol 127 (4) ◽  
pp. 408-409 ◽  
Author(s):  
Chunhua Liu ◽  
Luyu Wang ◽  
Yinghong Cao

2013 ◽  
Vol 791-793 ◽  
pp. 370-373
Author(s):  
Hua Bai ◽  
Yue Zhang

In order to solve the problem of traditional buffeting analysis method is complex, the paper summarizes a calculation method of simplifying the suspension bridge buffeting response spectrum which considers the background response by simplifying the vibration mode function. Examples calculation shows that this function is efficient and accurate. With this method the paper analyzes the impact of parameters including structural damping ratio, aerodynamic admittance function, pneumatic self-excited forces, the main beam span and so on on the suspension bridge buffeting response. Results show that: First, the impact of the background response on concrete bridges with larger damping ratio cannot be ignored. Second, when aerodynamic admittance takes Sears function, the buffeting response analysis results may be partial dangerous. Third, the role of the background response on large long-span bridges of more than 2000 m can be ignored.


2001 ◽  
Vol 01 (03) ◽  
pp. 429-453 ◽  
Author(s):  
YEONG-BIN YANG ◽  
SU-VAI MAC ◽  
CHERN-HWA CHEN

A procedure for the spectral analysis of buffeting response of long span bridges under unsteady wind loads is developed, with emphasis placed on inclusion of the multi-mode vibrations. The effect of mean wind velocity is considered through the aerodynamic stiffness and damping matrices using the flutter derivatives, while the effect of buffeting through the auto- and cross-power spectral densities. Compared with the conventional approach, the present approach is featured by the fact that no selection has to be made concerning the dominant modes. It can be reasonably used in analyzing cable-stayed bridges of complex geometry or of asymmetric shape, such as the Kao-Ping-Hsi Bridge, where the conventional approach has its limitations. The numerical studies indicate that using the conventional approach, by which the coupling effect is ignored, may significantly overestimate the critical wind velocity, while underestimating the buffeting responses of cable-stayed bridges.


2015 ◽  
Vol 15 (01) ◽  
pp. 1540005 ◽  
Author(s):  
Banafsheh Asgari ◽  
Siti Aminah Osman ◽  
Azlan Bin Adnan

Cable-stayed bridges have been developing rapidly in the last decade and have become one of the most popular types of long-span bridges. One of the important issues in the design and analysis of cable-stayed bridges is determining the pre-tensioning cable forces that optimize the structural performance of the bridge. Appropriate pre-tensioning cable forces improve the damaging effect of unbalanced loading due to the deck dead load. Because the cable-stayed structure is a highly undetermined system, there is no unique solution for directly calculating the initial cable forces. Numerous studies have been conducted on the specification of cable pre-tensioning forces for cable-stayed bridges. However, most of the proposed methods are limited in their ability to optimize the structural performance. This paper presents an effective multi-constraint optimization strategy for cable-stayed bridges based on the application of an inverse problem through unit load method (ULM). The proposed method results in less stresses in the bridge members, more stability and a shorter simulation time than the existing approaches. The finite element (FE) model of the Tatara Bridge in Japan is considered in this study. The results show that the proposed method successfully restricts the pylon displacement and establishes a uniform deck moment distribution in the simulated cable-stayed bridge; thus, it might be a useful tool for designing other long-span cable-stayed bridges.


Sign in / Sign up

Export Citation Format

Share Document