Computation of Lattice Kinetic Scheme for Double-Sided Parallel and Antiparallel Wall Motion

2014 ◽  
Vol 592-594 ◽  
pp. 1967-1971 ◽  
Author(s):  
D. Arumuga Perumal ◽  
Anoop K. Dass

This paper is concerned with the double-sided lid-driven cavity simulation of two-dimensional lattice kinetic scheme on the uniform lattice arrangement based on the standard lattice Boltzmann method. The double-sided lid-driven cavity problem has multiple steady solutions for some aspect ratios. However, for the double-sided square cavity no multiplicity of solutions has been observed for both the parallel and antiparallel motion of the walls. To validate this new lattice kinetic scheme, the numerical simulations of the double-sided square driven cavity flow at Reynolds numbers from 10 to 1000 are carried out. The Reynolds number effect on the flow structure is clearly manifested by the streamline patterns and velocity profiles. It is concluded that the present study in double-sided lid-driven cavity produces results that are in excellent conformity with earlier conventional numerical observations.

2016 ◽  
Vol 12 (2) ◽  
pp. 122-127
Author(s):  
Juraj Mužík

Abstract A Lattice Boltzmann method is used to analyse incompressible fluid flow in a two-dimensional cavity and flow in the channel past cylindrical obstacle. The method solves the Boltzmann’s transport equation using simple computational grid - lattice. With the proper choice of the collision operator, the Boltzmann’s equation can be converted into incompressible Navier-Stokes equation. Lid-driven cavity benchmark case for various Reynolds numbers and flow past cylinder is presented in the article. The method produces stable solutions with results comparable to those in literature and is very easy to implement.


2012 ◽  
Vol 12 (6) ◽  
Author(s):  
Fudhail Bin Abdul Munir

In recent years, due to rapidly increasing computational power, computational methods have become the essential tools to conduct researches in various engineering fields.  In parallel to the development of ultra high speed digital computers, computational fluid dynamics (CFD) has become the new third approach apart from theory and experiment in the philosophical study and development of fluid dynamics.  Lattice Boltzmann method (LBM) is an alternative method to conventional CFD.  LBM is relatively new approach that uses simple microscopic models to simulate complicated microscopic behavior of transport phenomena.  In this paper, fluid flow behaviors of steady incompressible flow inside lid driven square cavity are studied.  Numerical calculations are conducted for different Reynolds numbers by using Lattice Boltzmann scheme.  The objective of the paper is to demonstrate the capability of this lattice Boltzmann scheme for engineering applications particularly in fluid transport phenomena. Keywords-component; lattice Boltzmann method, lid driven cavity, computational fluid dynamics.


2014 ◽  
Vol 670-671 ◽  
pp. 747-750
Author(s):  
Zhi Jun Gong ◽  
Jiao Yang ◽  
Wen Fei Wu

For indepth study on flow characteristics for fluid bypass obstacles in micro-channel, the Lattice Boltzmann Method (LBM) was used to simulate fluid flow over two circular cylinders in side-by-side arrangement of a micro-channel. The velocity distribution and recirculation zone length under different Reynolds numbers (Re = 0~100) and different spacing ratio (H/D= 0~2.0) were obtained. The results show that the pattern of flow and the size of recirculation zone in the micro-channel depend on the combined effect of Re and H/D.


2014 ◽  
Vol 554 ◽  
pp. 665-669
Author(s):  
Leila Jahanshaloo ◽  
Nor Azwadi Che Sidik

The Lattice Boltzmann Method (LBM) is a potent numerical technique based on kinetic theory, which has been effectively employed in various complicated physical, chemical and fluid mechanics problems. In this paper multi-relaxation lattice Boltzmann model (MRT) coupled with a Large Eddy Simulation (LES) and the equation are applied for driven cavity flow at different Reynolds number (1000-10000) and the results are compared with the previous published papers which solve the Navier stokes equation directly. The comparisons between the simulated results show that the lattice Boltzmann method has the capacity to solve the complex flows with reasonable accuracy and reliability. Keywords: Two-dimensional flows, Lattice Boltzmann method, Turbulent flow, MRT, LES.


2015 ◽  
pp. 157-168
Author(s):  
Natasa Lukic ◽  
Predrag Tekic ◽  
Jelena Radjenovic ◽  
Ivana Sijacki

The present study is concerned with two-sided lid-driven incompressible flow in rectangular, deep cavities applying lattice Boltzmann method. After validating the code for the square cavity, solutions for cavities with an aspect ratio 1.5 and 4 were obtained for the Reynolds numbers of 100, 400, 1000 and 3200. The influence of the Reynolds number and aspect ratio on the flow pattern and on the characteristics of vortices inside the cavity was studied. Symmetric flow pattern was obtained for all investigated cases. The middle of the cavity is mostly influenced by the increase in the aspect ratio. Critical aspect ratio, at which the birth of a primary vortex in the middle of the cavity takes place, was determined to be between 2.7 and 2.725.


2021 ◽  
Vol 32 (1) ◽  
pp. 21-28
Author(s):  
Umar Fauzi

The Lattice Boltzmann Method is one of the computational fluid dynamics methods that can be applied to simulate fluid based on the microscopic and kinetic theory of gases. In this study, earth mantle convection is simulated by combining the concept of lid-driven cavity simulation and natural convection using the Lattice Boltzmann method in a two-dimensional system (D2Q9). The results of the lid-driven cavity and natural convection simulation are comparable to previous works. This study shows that at a certain lid velocity, the direction of the moving plume is changed. This earth mantle convection simulation will give better and more reliable results by considering more complicated boundary conditions and adequate simulation systems.


2006 ◽  
Vol 17 (10) ◽  
pp. 1375-1390 ◽  
Author(s):  
FRANCESCA TOSI ◽  
STEFANO UBERTINI ◽  
SAURO SUCCI ◽  
HUDONG CHEN ◽  
ILYA V. KARLIN

In the recent years the entropic version of the lattice Boltzmann method (ELB) has made proof of significantly enhanced numerical stability as compared to the standard single-time relaxation form of the lattice Boltzmann equation. In this paper, we compare ELB with a more empirical procedure, based on the idea of modifying the value of the relaxation time in such a way as to enforce the positivity of the kinetic distribution function (fix-up method). The stability enhancement due to ELB and fix-up are compared for the case a two-dimensional lid-driven cavity flow. It is shown that ELBM offers higher stability at a moderate price in terms of computational overhead. On the other hand, even the simple fix-up procedure can provide significant savings over the standard single-time relaxation method, virtually cost-free in terms of computational requirements.


Sign in / Sign up

Export Citation Format

Share Document