Simulation Research on 40Gbit/s Hybrid WDM/TDM PON System

2014 ◽  
Vol 602-605 ◽  
pp. 3035-3038
Author(s):  
Jiang Nan Yang ◽  
Li Qun Huang ◽  
Xue Li Tang

Recently, wavelength division mulplexing (WDM) technology has been extensively studied, and various WDM-PON architectures have been proposed for next-generation passive optical network (PON). In this paper, we combine the TDM with WDM architecture to achieve high-speed, long-distance transmission. To reduce the cost of ONU, we achive the colorless ONU by placing a Reflective Semiconductor Optical Amplifier (RSOA) in the uplink transmission. We build the whole architecture to simulate the Hybrid WDM/TDM PON System in Optisystem and the experimental results prove that the architecture is feasible and reasonable.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
M. S. Salleh ◽  
A. S. M. Supa’at ◽  
S. M. Idrus ◽  
S. Yaakob ◽  
Z. M. Yusof

We propose a new architecture of dynamic time-wavelength division multiplexing-passive optical network (TWDM-PON) system that employs integrated all-optical packet routing (AOPR) module using4λ×10 Gbps downstream signal to support 20 km fiber transmission. This module has been designed to support high speed L2 aggregation and routing in the physical layer PON system by using multicasting cross-gain modulation (XGM) to route packet from any PON port to multiple PON links. Meanwhile, the fixed wavelength optical line terminal (OLT) transmitter with wavelength tuning free features has been designed to integrate with the semiconductor optical amplifier (SOA) and passive arrayed waveguide grating (AWG). By implementing hybrid multicasting and multiplexing, the system has been able to support a PON system with full flexibility function for managing highly efficient dynamic bandwidth allocation to support the4λ×10 Gb/s TWDM-PON system used to connect 4 different PON links using fixed wavelength OLT transceivers with maximum 38 dB link loss.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Meet Kumari ◽  
Reecha Sharma ◽  
Anu Sheetal

AbstractNowadays, bandwidth demand is enormously increasing, that causes the existing passive optical network (PON) to become the future optical access network. In this paper, next generation passive optical network 2 (NG-PON2) based, optical time division multiplexing passive optical network (OTDM-PON), wavelength division multiplexing passive optical network (WDM-PON) and time & wavelength division multiplexing passive optical network (TWDM-PON) systems with 20 Gbps (8 × 2.5 Gbps) downstream and 20 Gbps (8 × 2.5 Gbps) upstream capacity for eight optical network units has been proposed. The performance has been compared by varying the input power (−6 to 27 dBm) and transmission distance (10–130 km) in terms of Q-factor and optical received power in the presence of fiber noise and non-linearities. It has been observed that TWDM-PON outperforms OTDM-PON and WDM-PON for high input power and data rate (20/20 Gbps). Also, TWDM-PON shows its superiority for long-reach transmission up to 130 km, which is a cost-effective solution for future NG-PON2 applications.


2018 ◽  
Vol 39 (4) ◽  
pp. 407-412
Author(s):  
Meenakshi Chakraborty ◽  
Taraprasad Chattopadhyay

Abstract This paper describes an useful scheme of ultra-dense wavelength division multiplexed-passive optical network (UDWDM-PON) meant for the bidirectional transmission of analog video signals to the users in the Optical Network Unit (ONU). Each user has a dedicated wavelength which carries a group of analog video channels. This PON scheme is bidirectional with a long distance of transmission of 100 km typically over a single optical fiber. The video channels designated for a particular user in the ONU can be continuously tuned by a post-detection tunable bandpass filter. Intermodulation distortion (IMD) resulting from a mixing of analog video channels carried by a single wavelength has been calculated for a group of three video channels which lies in the range of –30 dB to –85 dB typically for a set of values of parameters used in practice. This IMD level is fairly acceptable for analog video signal transmission and reception in practice. The novelty of this scheme is that it is long reach.


2015 ◽  
Vol 36 (3) ◽  
Author(s):  
Anindya Sundar Das ◽  
Ardhendu Sekhar Patra

AbstractWe have proposed and demonstrated a full-duplex wavelength division multiplexed passive optical network (WDM-PON) configuration based on reflective semiconductor optical amplifier (RSOA). RSOA is used for reusing and remodulate the downlink signal in the uplink. We have used external modulation scheme for transmitting 20 Gbps data rates in two channels over a 40 km single mode fiber (SMF). The uplink and the downlink performances are checked by the bit error rate (BER) and the eye diagrams.


Sign in / Sign up

Export Citation Format

Share Document