Effect of Twice Quenching on Prior Austenite Grains and Rotating Bending Fatigue Cracks in SUJ2 Steel

2014 ◽  
Vol 620 ◽  
pp. 443-448 ◽  
Author(s):  
Koshiro Mizobe ◽  
Wakana Matsuda ◽  
Masayuki Matsushita ◽  
Takuya Shibukawa ◽  
Katsuyuki Kida

Martensitic high-carbon high-strength SUJ2 bearing steel has been widely used as a main alloy for rolling contact applications, and also in components under bending and tension-compression. In order to enhance the material’s strength, refining the prior austenite grain size through repeated-heating was investigated in our previous work. In this work, we observed the microstructure of twice quenched N-rich SUJ2 steel and performed their rotating bending fatigue tests. It was found that most of cracks on the fracture surface originated from Al2O3 inclusions.

2012 ◽  
Vol 566 ◽  
pp. 150-156 ◽  
Author(s):  
Koshiro Mizobe ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Edson Costa Santos ◽  
Katsuyuki Kida ◽  
...  

Martensitic high-carbon high-strength SAE 52100 bearing steel is one of the main alloys used for rolling contact applications where high wear resistance is required. Refining the prior austenite grain size through repeated heating is a process commonly used to enhance the material’s strength. In this work, the microstructure of repeatedly quenched Ti, N-rich ultra-clean SAE 52100 steel was investigated. The material was melted by an electric furnace and formed by continuous casting and forging, and the crack origin on the fracture surface was investigated. It was found repeated furnace quenching effectively refined the martenstic structure.


2013 ◽  
Vol 372 ◽  
pp. 273-276 ◽  
Author(s):  
Kazuaki Nakane ◽  
Koshiro Mizobe ◽  
Edson Costa Santos ◽  
Katsuyuki Kida

Martensitic high-carbon high-strength SAE 52100 bearing steel is one of the main alloys used for rolling contact applications where high wear resistance is required. Refining the prior austenite grain size through repeated heating is a process commonly used to enhance the materials strength. In this work, the microstructure of repeatedly quenched Ti, N-rich ultra-clean SAE 52100 steel was investigated. The material was melted by an electric furnace and formed by continuous casting and forging, and the crack origin on the fracture surface was investigated. It was found repeated furnace quenching effectively refined the martenstic structure. In order to further understand the structure refinement we need to develop a new quantitative evaluation method. In this paper, the homology method is applied. We can estimate the situation of refinement quantitatively.


2017 ◽  
Vol 904 ◽  
pp. 24-28 ◽  
Author(s):  
Isamu Yoshida ◽  
Koshiro Mizobe ◽  
Katsuyuki Kida

Martensitic high-carbon chromium bearing steel is used for rolling contact applications in various mechanical parts. Induction heating is one of heat treatment methods which take shorter time and lower energy compared with furnace heating. In the present work, we prepared induction-heated and furnace-tempered JIS SUJ2 bearing steel bar specimens. After rotating bending tests, we observed their fracture surfaces. It was found that the very large fisheye crack failures occurred and the crack size increased with increasing number of cycles to failure.


2013 ◽  
Vol 300-301 ◽  
pp. 1298-1303 ◽  
Author(s):  
Koshiro Mizobe ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Edson Costa Santos ◽  
Takuya Shibukawa ◽  
...  

Martensitic high-carbon high-strength SAE 52100 bearing steel has been widely used as the main alloys for rolling contact applications, and also at the components under bending and tension-compression. In order to enhance the material’s strength, refining the prior austenite grain size through repeated heating has been investigated. In this work, the microstructure of repeatedly quenched-tempered Ti, N-rich SAE 52100 steel was investigated. The material was melted by an electric furnace and formed by continuous casting and forging, and the crack origin on the fracture surface was investigated. It was found that repeated furnace quenching and tempering effectively refined the martenstic structure.


2008 ◽  
Vol 51 (2) ◽  
pp. 166-172 ◽  
Author(s):  
Katsuji Tosha ◽  
Daisuke Ueda ◽  
Hirokazu Shimoda ◽  
Shigeo Shimizu

2012 ◽  
Vol 457-458 ◽  
pp. 1025-1031 ◽  
Author(s):  
Koshiro Mizobe ◽  
Edson Costa Santos ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Katsuyuki Kida ◽  
...  

Martensitic high carbon high strength SAE 52100 bearing steel is one of the main alloys used for rolling contact applications where high wear resistance are required. Due to its high fatigue strength, SAE 52100 is recently being used not only for the production of bearings but also shafts. Refining of prior austenite grain through repeated quenching is a procedure that can be used to enhance the material’s strength. In this work, the microstructure of repeatedly quenched SAE 52100 steel and its fatigue strength under rotating bending were investigated. It was found that repeated furnace heating and quenching effectively refined the martensitic structure and increased the retained austenite content. Repeated quenching was found to improve the fatigue strength of SAE 52100.


2007 ◽  
Vol 344 ◽  
pp. 87-96 ◽  
Author(s):  
M. Barletta ◽  
F. Lambiase ◽  
Vincenzo Tagliaferri

This paper deals with a definition of a relatively novel technique to improve the fatigue behavior of high strength aluminum alloys, namely, Fluidized Bed Peening (FBP). Fatigue samples made from AA 6082 T6 alloy were chosen according to ASTM regulation about rotating bending fatigue test and, subsequently, treated by varying FBP operational parameters and fatigue testing conditions. First, a full factorial experimental plan was performed to assess the trend of number of cycles to rupture of fatigue samples varying among several experimental levels the factors peening time and maximum amplitude of alternating stress applied to fatigue samples during rotating bending fatigue tests. Second, design of experiment (DOE) technique was used to analyze the influence of FBP operational parameters on fatigue life of AA 6082 T6 alloy. Finally, ruptures of FB treated samples and untreated samples were discussed in order to evaluate the influence of operational parameters on the effectiveness of FBP process and to understand the leading process mechanisms. At any rate, the fatigue behavior of processed components was found to be significantly improved, thereby proving the suitability of FBP process as alternative mechanical technique to enhance fatigue life of components made from high strength aluminum alloy.


2013 ◽  
Vol 307 ◽  
pp. 409-414 ◽  
Author(s):  
Kazuaki Nakane ◽  
Koshiro Mizobe ◽  
Edson Costa Santos ◽  
Kida Katsuyuki

Martensitic high carbon high strength SAE 52100 bearing steel is one of the main alloys used for rolling contact applications where high wear resistance are required. Due to its high fatigue strength, SAE 52100 is recently being used not only for the production of bearings but also shafts. In this work, quenched SAE 52100 steel fatigue strength under rotating bending was investigated. Especially, we focus on “fisheye around inclusion” where the fatigue crack starts. Quantitative evaluation of its optical micrograph has not been enough carried out. In order to develop easy evaluation method for the fisheye area, we apply homology technique to the optical observation.


2013 ◽  
Vol 2013.50 (0) ◽  
pp. 010901-010902
Author(s):  
Shota MIZUSHIMA ◽  
Noriyasu OGUMA ◽  
Yasuhiro ODAKE ◽  
Yuki SHIMADA

Sign in / Sign up

Export Citation Format

Share Document