Experiment of a Flat Plate Solar Water Heater Collector with Modified Design and Thermal Performance Analysis

2014 ◽  
Vol 624 ◽  
pp. 332-338 ◽  
Author(s):  
Shouquat Hossain ◽  
Ali Wadi Abbas ◽  
Jeyraj Selvaraj ◽  
Ferdous Ahmed ◽  
Nasrudin Bin Abd Rahim

An investigation is reported of the thermal performance of a flat plate solar water heater with a circulating absorber pipe surface. The thermal performance of the 2-side parallel serpentine flow solar water heater depends significantly on the heat transfer rate between the absorber surface and the water, and on the amount of solar radiation incident on the absorber surface. The modified pipe arrangement has a higher characteristic length for convective heat transfer from the absorber to the water, in addition to having more surface area exposed to solar radiation. It means during the operation of water heater, more solar energy is converted into useful heat. However, this modification has reduced the efficiency of the system marginally.

2021 ◽  
pp. 192-192
Author(s):  
Piyanun Charoensawan ◽  
Patomsok Wilaipon ◽  
Nopparat Seehawong

The flat plate solar water heater, using the closed-loop oscillating heat pipes (CLOHP), was constructed and investigated. The flat plate collector consisted of 10 pipes of CLOHP and the collector area was 1.5?1 m2. Each CLOHP was made of a copper capillary tube with a 1.5 mm inner diameter, a 2.8 mm outer diameter and had 20 turns. The distilled water was used as the working fluid with a filling ratio of 50% the tube?s total internal volume. The evaporator section of the CLOHP was placed on the absorber plate of the collector, and its condenser section was wrapped around the copper tube, in which hot water flowed through. The solar water heater was tested under the solar simulator with halogen lamps generating the uniform artificial solar energy. The irradiation intensity and the water flow rate of the solar water heater were adjusted. It was found that the thermal performance of the solar water heater clearly improved with an increase in the irradiation intensity from 480 to 1086 W/m2. However, the water flow rate in the range of 1.5-3.0 L/min, had a thermal performance that was slightly different. The thermal efficiency of 0.67 was archived at the high irradiation intensity of 947-1086 W/m2. Moreover, the mathematical model to predict the thermal efficiency of the flat plate solar water heater with the CLOHPs was obtained.


2014 ◽  
Vol 592-594 ◽  
pp. 1706-1713
Author(s):  
R. Venkatesh ◽  
W. Christraj

Of all the renewable sources of energy available, solar thermal energy is the most abundant one and is available in both direct as well as indirect forms. In order to increase the thermal performance of solar collectors, the multipurpose solar collectors were investigated experimentally by the storage tank of the conventional solar water collector is modified as riser tubes and header. It is fitted in the bottom of the solar air heater as an absorber in the normal air heater. The thermal performance of thermosyphon flat plate solar water heater was investigated on both summer and winter seasons. The maximum daily average of 72.05%, 0.0316 kg/sm2and 0.873 m/s were recorded for the relative humidity, mass flow rate and wind speed at summer season respectively. Corresponding figure at for winter was 19.5 % 0.0295 kg/sm2and 0.722 m/s respectively. A minimum daily average of 11.23% and 0.384 m/s for the relative humidity and wind speed respectively. These results show that the mass flow rate obtained was a function of solar radiation and relative humidity. The less humid the ambient air becomes, the higher the heat gained by the system hence higher water flow rate. The maximum value of relative humidity obtained is due to low solar radiation on winter season. The heat removal factor (FR) and collector efficiency factor (Fo) were found to be higher for Multipurpose solar water heater as compared to conventional solar water heaters for summer as well as winter season. These factors for Multipurpose solar water heater were more during summer and winter.


2014 ◽  
Vol 953-954 ◽  
pp. 107-110
Author(s):  
Fen E Hu ◽  
Sheng Xian Wei ◽  
Dong Yu Li

Transient and daily thermal performances of the balcony-type solar water heater with a flat-plate collector were investigated under different weather conditions in Kunming. The results showed that the solar irradiance has a few influences on the thermal performance of the solar water heater. The system thermal efficiency is 50-57% when the daily total radiation varies from 5.3 to 22.2 MJ·m-2. The initial temperature of the water in the water tank has great effects on the thermal efficiency. The daily thermal efficiency decreases by 9% when the initial temperature increases by 10°C. The percentage (Useful energy/Energy need) exceeds 60% when the daily total solar radiation is more than 11.6 MJ·m-2. When the daily total solar radiation is larger than 21 MJ·m-2, the useful energy output of the solar water heater can meet the user requirement for hot water.


Sign in / Sign up

Export Citation Format

Share Document