Development of Experiment Platform of PMSM Control System in Electric Vehicles

2014 ◽  
Vol 635-637 ◽  
pp. 1241-1245
Author(s):  
Li Lin ◽  
Hong Zhi Cui ◽  
Hu Zhu

In order to test the efficiency of motor control strategy, we developed a platform based on DSP2812,named permanent magnet synchronous motor control system which used in vehicle. The algorithm of vector control system is proved effective to modify parameters and debug. And the researches provide the experiment basis of motor control strategy study.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3116 ◽  
Author(s):  
Jianfei Zhao ◽  
Minqi Hua ◽  
Tingzhang Liu

In this paper, a sliding mode vector control system based on collaborative optimization of an axial flux permanent magnet synchronous motor (AFPMSM) for an electric vehicle is proposed. In order to increase the high efficiency range of electric vehicles and improve the cruising range, a collaborative optimization control strategy is firstly proposed. Due to the use of a dual stator-single rotor AFPMSM, the multi-motor efficiency optimization map and torque cooperative control are used to realize the working mode conversion of single stator and double stator, and the torque ripple caused by the working mode conversion is improved by fuzzy control. In order to improve the torque tracking capability, speed limiting characteristics, and operating characteristics, a speed limit and current vector control strategy based on a sliding mode controller is proposed and studied. The dynamic performance of electric vehicles is improved by a sliding mode vector control. Finally, a drive control system was developed for the proposed control strategy, and the complete vehicle test was carried out. The collaborative optimization control experiment and torque tracking and speed limiting experiments verify the correctness and effectiveness of the proposed control strategy. The acceleration performance and endurance experiments show that the proposed control strategy can effectively improve the cruising range and the acceleration performance of electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document