Registration of Building Intensity Image and its Color Image Using SIFT Algorithm

2014 ◽  
Vol 638-640 ◽  
pp. 2160-2163
Author(s):  
Gui Hua Cang ◽  
Jian Ping Yue

Fusion of close range photogrammetry (CRP) and terrestrial laser scanning (TLS) technology has been a hot topic in the field of building reconstruction. There are many ways to realize the fusion of the two kind data. In this paper, we propose a method for 3D-2D data registration based on Scale Invariant Feature Transform (SIFT) algorithm and range intensity data. 3D terrestrial laser scanner and digital camera are different sensors, which will lead to large difference between intensity image (derived from range intensity data) and color image. The traditional image matching method can not apply to register these kind images. This paper focuses on studying the feasibility and practicability of SIFT algorithm on such different images matching. The result shows that the principal of SIFT method is suitable for the registration of the two kind images.

Author(s):  
Yubin Liang ◽  
Yan Qiu ◽  
Tiejun Cui

Co-registration of terrestrial laser scanner and digital camera has been an important topic of research, since reconstruction of visually appealing and measurable models of the scanned objects can be achieved by using both point clouds and digital images. This paper presents an approach for co-registration of terrestrial laser scanner and digital camera. A perspective intensity image of the point cloud is firstly generated by using the collinearity equation. Then corner points are extracted from the generated perspective intensity image and the camera image. The fundamental matrix F is then estimated using several interactively selected tie points and used to obtain more matches with RANSAC. The 3D coordinates of all the matched tie points are directly obtained or estimated using the least squares method. The robustness and effectiveness of the presented methodology is demonstrated by the experimental results. Methods presented in this work may also be used for automatic registration of terrestrial laser scanning point clouds.


Author(s):  
Yubin Liang ◽  
Yan Qiu ◽  
Tiejun Cui

Co-registration of terrestrial laser scanner and digital camera has been an important topic of research, since reconstruction of visually appealing and measurable models of the scanned objects can be achieved by using both point clouds and digital images. This paper presents an approach for co-registration of terrestrial laser scanner and digital camera. A perspective intensity image of the point cloud is firstly generated by using the collinearity equation. Then corner points are extracted from the generated perspective intensity image and the camera image. The fundamental matrix F is then estimated using several interactively selected tie points and used to obtain more matches with RANSAC. The 3D coordinates of all the matched tie points are directly obtained or estimated using the least squares method. The robustness and effectiveness of the presented methodology is demonstrated by the experimental results. Methods presented in this work may also be used for automatic registration of terrestrial laser scanning point clouds.


2013 ◽  
Vol 405-408 ◽  
pp. 3032-3036
Author(s):  
Yi Bo Sun ◽  
Xin Qi Zheng ◽  
Zong Ren Jia ◽  
Gang Ai

At present, most of the commercial 3D laser scanning measurement systems do work for a large area and a big scene, but few shows their advantage in the small area or small scene. In order to solve this shortage, we design a light-small mobile 3D laser scanning system, which integrates GPS, INS, laser scanner and digital camera and other sensors, to generate the Point Cloud data of the target through data filtering and fusion. This system can be mounted on airborne or terrestrial small mobile platform and enables to achieve the goal of getting Point Cloud data rapidly and reconstructing the real 3D model. Compared to the existing mobile 3D laser scanning system, the system we designed has high precision but lower cost, smaller hardware and more flexible.


2012 ◽  
Vol 610-613 ◽  
pp. 3708-3714
Author(s):  
Tien Thanh Nguyen ◽  
Xiu Guo Liu ◽  
You Huang ◽  
Hong Ping Wang ◽  
Quoc Lap Kieu ◽  
...  

In the mining industry, conventional methods such as GPS and total station technology are used most extensively for data collection and in return used to compute volume of extracted materials (ore and waste). In situation where the ore body is bigger in size, and changes dynamically, the use of conventional method to measure volume of ore is not practicable and economically viable because of the workload involved, precision and accuracy of the survey and safety of workers. In this paper a method and work flow of ore heap volume measurement by using 3D laser scanning technique to acquire point cloud data was introduced. RiSCAN PRO and Geomagic studio was used to process the original data (registration, noise elimination, georeferencing, resampling etc.), 3D modeling and volume computations. A comparison on precision of geodetic control points coordinate measured by GPS receivers and 3D laser scanner was carried out. The results indicate that 3D laser scanning technique can effectively be applied to ore output volume measurement since it satisfies the requirement of ore volume measurement.


Author(s):  
A. Salach ◽  
J.S. Markiewicza ◽  
D. Zawieska

An orthoimage is one of the basic photogrammetric products used for architectural documentation of historical objects; recently, it has become a standard in such work. Considering the increasing popularity of photogrammetric techniques applied in the cultural heritage domain, this research examines the two most popular measuring technologies: terrestrial laser scanning, and automatic processing of digital photographs. The basic objective of the performed works presented in this paper was to optimize the quality of generated high-resolution orthoimages using integration of data acquired by a Z+F 5006 terrestrial laser scanner and a Canon EOS 5D Mark II digital camera. The subject was one of the walls of the “Blue Chamber” of the Museum of King Jan III’s Palace at Wilanów (Warsaw, Poland). The high-resolution images resulting from integration of the point clouds acquired by the different methods were analysed in detail with respect to geometric and radiometric correctness.


2011 ◽  
Vol 6 ◽  
pp. 89-96 ◽  
Author(s):  
Francesca Duca ◽  
Miriam Cabrelles ◽  
Santiago Navarro ◽  
Ana Elena Segui ◽  
José Luis Lerma

Laser scanning is a high-end technology with possibilities far ahead the well-known civil engineering and industrial applications. The actual geomatic technologies and methodologies for cultural heritage documentation allow the generation of very realistic 3D results used for many scopes like archaeological documentation, digital conservation, 3D repositories, etc. The fast acquisition times of large number of point clouds in 3D opens up the world of capabilities to document and keep alive cultural heritage, moving forward the generation of virtual animated replicas of great value and smooth multimedia dissemination. This paper presents the use of a terrestrial laser sca nning (TLS) as a valuable tool for 3D documentation of large outdoor cultural heritage sculptures such as two of the existing ones inside the “Campus de Vera” of the UPV: “Defensas I” and “Mentoring”. The processing of the TLS data is discussed in detail in order to create photo-realistic digital models. Data acquisition is conducted with a time-of-flight scanner, characterized by its high accuracy, small beam, and ultra-fine scanning. Data processing is performed using Leica Geosystems Cyclone Software for the data registration and 3DReshaper Software for modelling and texturing.  High-resolution images after calibration and orientation of an off-the-shelf digital camera are draped onto the models to achieve right appearance in colour and texture. A discussion on the differences found out when modelling sculptures with different deviation errors will be presented. Processing steps such as normal smoothing and vertices recalculation are found appropriate to achieve continuous meshes around the objects.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Omar Al Khalil

During the past few years, new developments have occurred in the field of 3D photogrammetric modeling of culture heritage. One of these developments is the expansion of 3D photogrammetric modeling open-source software, such as VisualSfM, and cost-effective licensed software, such as Agisoft Metashape into the practical and affordable world. This type of SfM (Structure from Motion) software offers the world of 3D modelling of culture heritage a powerful tool for documentation and visualization. On the other hand, low-cost cameras are now available on the market. These cameras are characterized by high resolution and good quality lens, which makes them suitable for photogrammetric modelling. This paper reports on the results of the application of a SfM photogrammetry system in the 3D modelling of Safita Tower, a medieval structure in Safita, north-western Syria. The applied photogrammetric system consists of the Nikon Coolpix P100 10 MP digital camera and the commercial software Agisoft Metashape. The resulted 3D point clouds were compared with an available dense point cloud acquired by a laser scanner. This comparison proved that the low-cost SfM photogrammetry is an accurate methodology to 3D modeling historical monuments. 


Author(s):  
A. Salach ◽  
J.S. Markiewicza ◽  
D. Zawieska

An orthoimage is one of the basic photogrammetric products used for architectural documentation of historical objects; recently, it has become a standard in such work. Considering the increasing popularity of photogrammetric techniques applied in the cultural heritage domain, this research examines the two most popular measuring technologies: terrestrial laser scanning, and automatic processing of digital photographs. The basic objective of the performed works presented in this paper was to optimize the quality of generated high-resolution orthoimages using integration of data acquired by a Z+F 5006 terrestrial laser scanner and a Canon EOS 5D Mark II digital camera. The subject was one of the walls of the “Blue Chamber” of the Museum of King Jan III’s Palace at Wilanów (Warsaw, Poland). The high-resolution images resulting from integration of the point clouds acquired by the different methods were analysed in detail with respect to geometric and radiometric correctness.


Author(s):  
N. A. S. Russhakim ◽  
M. F. M. Ariff ◽  
Z. Majid ◽  
K. M. Idris ◽  
N. Darwin ◽  
...  

<p><strong>Abstract.</strong> The popularity of Terrestrial Laser Scanner (TLS) has been introduced into a field of surveying and has increased dramatically especially in producing the 3D model of the building. The used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of building plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of building survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for building survey and mapping. In this study, the efficiency of TLS Leica C10 for building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001<span class="thinspace"></span>m meanwhile, RMSE for MLS technique is 0.007<span class="thinspace"></span>m. The difference between these two techniques is 0.006<span class="thinspace"></span>m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.</p>


Author(s):  
S. Peterson ◽  
J. Lopez ◽  
R. Munjy

<p><strong>Abstract.</strong> A small unmanned aerial vehicle (UAV) with survey-grade GNSS positioning is used to produce a point cloud for topographic mapping and 3D reconstruction. The objective of this study is to assess the accuracy of a UAV imagery-derived point cloud by comparing a point cloud generated by terrestrial laser scanning (TLS). Imagery was collected over a 320&amp;thinsp;m by 320&amp;thinsp;m area with undulating terrain, containing 80 ground control points. A SenseFly eBee Plus fixed-wing platform with PPK positioning with a 10.6&amp;thinsp;mm focal length and a 20&amp;thinsp;MP digital camera was used to fly the area. Pix4Dmapper, a computer vision based commercial software, was used to process a photogrammetric block, constrained by 5 GCPs while obtaining cm-level RMSE based on the remaining 75 checkpoints. Based on results of automatic aerial triangulation, a point cloud and digital surface model (DSM) (2.5&amp;thinsp;cm/pixel) are generated and their accuracy assessed. A bias less than 1 pixel was observed in elevations from the UAV DSM at the checkpoints. 31 registered TLS scans made up a point cloud of the same area with an observed horizontal root mean square error (RMSE) of 0.006m, and negligible vertical RMSE. Comparisons were made between fitted planes of extracted roof features of 2 buildings and centreline profile comparison of a road in both UAV and TLS point clouds. Comparisons showed an average +8&amp;thinsp;cm bias with UAV point cloud computing too high in two features. No bias was observed in the roof features of the southernmost building.</p>


Sign in / Sign up

Export Citation Format

Share Document