Analysis on Reliability of Load Test on Bearing Capacity of Foundation Piles

2014 ◽  
Vol 638-640 ◽  
pp. 671-674
Author(s):  
Yu Zhou Sima ◽  
Qing Hua Sun

In static load test, most of piles do not destroy, the piles still exist capacity, which reduce the reliability index of pile foundation. This paper employs Bayesian Statistic method to update the measured capacity of piles. Meanwhile, based on updating data, the reliability index is calculated considering the destruction of piles. The case study shows that the reliability index of capacity becomes large when the time of pile destruction increases. Therefore, when judging the safety of pile foundation, it is highly necessary to consider the influence of pile destruction on reliability of piles.

2014 ◽  
Vol 501-504 ◽  
pp. 234-237
Author(s):  
Yan Peng Zhu ◽  
Ze Xue Bao ◽  
Tian Zhong Ma ◽  
Chun Jing Lai

The application of pile foundation is promoted by the rapid development of the high speed railway, highway, high-rise buildings and big volume weight of building. However, the static load test and low strain test play a very important role in pile foundation inspection and ensurement of the quality of pile foundation engineering. In this paper, combined with the engineering of the basis of a hospital in lanhou, the author analyzed the results of 7 test piles static load test and a large number of low strain test and summarised pile testing contents and methods. At the same time,the bearing capacity of anchor pile in static load test is discussed.


2014 ◽  
Vol 578-579 ◽  
pp. 663-666
Author(s):  
Qi Hong Wu ◽  
Qing Xu ◽  
Shi Ming Wan

Firstly, the technology of screw pile is introduced briefly. It has high body quality, high bearing capacity and wide application prospect. Then, based on engineering examples, the results of static load test and high strain testing for the bearing capacity of SCREW PILE foundation are analyzed contrastively. The bearing capacity value tested by high strain dynamic testing is higher than the static loading test’s with 13%~21%, which should be attached importance in the check and accept and application of the screwed pile. The analysis and sum up of testing results should be considered to the design and application of screwed pile, providing some reference to the quality judge and bearing capacity confirming is another purpose in the paper.


2015 ◽  
Vol 77 (11) ◽  
Author(s):  
Helmy Darjanto ◽  
Masyhur Irsyam ◽  
Sri Prabandiyani Retno

The Spider Net System Footing (SNSF) is a raft foundation system that commonly used in Indonesia. It contains a plate, downward ribs system for reinforcement, and the compacted filled soil. The ribs are in longitudinal and transversal, called as settlement rib and in diagonal direction, named as construction rib. This paper explores the load transfer mechanism along the plate, the ribs, filled soil and the base soil under the footing system. The mechanism is investigated by conducting full scale static load test on SNSF. Strain gauges were installed to monitor the strain increment of each footing elements during loading. 3D numerical analysis was also conducted to verify the experimental results. To analyze the results, Load-Ultimate Ratio Factor (L-URF) was proposed. L-URF was a ratio between ultimate soil bearing capacity of the SNSF and the applied loading at specific element. Higher the L-URF value means higher loading applied at its associate element. Both experimental and numerical results show that at the first stage the loading was fully carried out by the tip of the ribs and transferred to the soil stratum under the footing system. Increasing the loading, the ribs, plate, and filled soil altogether sustain the loading and then transferred to the soil stratum below the footing system. The results also affirm that SNSF generate higher bearing capacity compare with simple shallow footing.  


2013 ◽  
Vol 838-841 ◽  
pp. 854-857
Author(s):  
Rui Chao Cheng ◽  
Xin Yu

The bearing capacity characteristics and side friction characters of post-grouting pile were studied in the static load test which included two piles with post-grouting or not. When the pile head settlements were same, the loads applied on the pile top were used to analyze the bearing properties of post-grouting pile. We got the ultimate side friction of post-grouting pile after fitting test curves of relations between friction resistance and displacement. The tests indicate that both the bearing capacity characteristics and side friction of post-grouting pile are increased in various degrees.


2021 ◽  
Vol 13 (23) ◽  
pp. 13166
Author(s):  
Xusen Li ◽  
Jiaqiang Zhang ◽  
Hao Xu ◽  
Zhenwu Shi ◽  
Qingfei Gao

Prestressed high-strength concrete (PHC) pipe piles have been widely used in engineering fields in recent years; however, the influencing factors of their ultimate bearing capacity (UBC) in multilayer soil need to be further studied. In this paper, a static load test (SLT) and numerical analysis are performed to obtain the load transfer and key UBC factors of pipe piles. The results show that the UBC of the test pile is mainly provided by the pile shaft resistance (PSR), but the pile tip resistance (PTR) cannot be ignored. Many factors can change the UBC of pipe piles, but their effects are different. The UBC of the pipe pile is linearly related to the friction coefficient and the outer-to-inner diameter ratio. Changes in the pile length make the UBC increase sharply. Low temperatures can produce freezing stress at the pile–soil interface. The effect of changing the Young modulus of pile tip soil is relatively small.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Baoyun Zhao ◽  
Xiaoping Wang ◽  
Mijia Yang ◽  
Dongyan Liu ◽  
DongSheng Liu ◽  
...  

With the development of tourism, the number of multistorey buildings in mountain areas is increasing gradually, and the requirements of the form and bearing capacity of foundation in landslide areas are getting more demanding than ever. In-situ testing of rock and soil mass in slope area has important practical significance for improving the stability of building foundation. Taking a project in Baishi Mountain located in southwest of China as an example, firstly, the geological structure and mechanical properties of soil are analyzed. Then, two types of pile foundations, i.e., empty-bottom pile foundations and solid-bottom pile foundations, are designed based on the characteristics of the geological structure for carrying out the static load test on pile foundation. The test results are as follows: (a) the load settlement curve (Q-S) of the empty-bottom test pile shows a steep drop, while the Q-S curve of the solid-bottom test pile shows a gradual change, showing that the end-bearing friction pile’s property and the ultimate bearing capacity of the solid-bottom pile are higher than those of the empty-bottom pile. (b) The maximum lateral friction of the four test piles is 139.158 kPa, 148.015 kPa, 150.828 kPa, and 154.956 kPa, respectively. (c) The shaft skin resistance under ultimate load is coming close to the maximum value, and the maximum values are 9.792 mm, 7.939 mm, 9.881 mm, and 14.97 mm, respectively. Research results can serve as design bases for the pile foundation of multistorey buildings located in landslide areas of Baishi Mountain in the southwest of China and also as references for the engineering application of pile foundation in similar geological fracture areas.


Author(s):  
Masaaki Isa ◽  
Masatsugu Shinohara ◽  
Yasumoto Aoki

<p>Collapse and falling of columnar structures such as road illumination poles installed on a bridge have been confirmed in the past earthquakes. Therefore, it is important to evaluate the seismic resistance of columnar structures from the viewpoint of securing the function as an emergency transportation route in the event of disaster. In this study, the destruction order and destruction form of the road illumination pole in the external force action were analyzed and verified, and the model specimen was produced to carry out the static load test. As a result of the experiment, it was shown that anchor bolts and wall concretes of the base were damaged antecedently.</p>


Sign in / Sign up

Export Citation Format

Share Document