Design and Research of Computer System High Confidence Fault Tolerant

2014 ◽  
Vol 644-650 ◽  
pp. 3361-3364
Author(s):  
Jin Quan Qi

For high security and reliability of system critical areas, this paper designed a high-confidence fault-tolerant computer system, which combined high credibility technology with high organic reliability integration. High trusted computing technology used TCM structure to build a trusted password support system and achieve the platform integrity, identity authentication and data security. Redundant fault-tolerant technology to ensure the system, which activated in case of an error, is still able to provide uninterrupted service. Simulation results show the effectiveness and implementation of the technical solution approaches.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2210
Author(s):  
Luís Caseiro ◽  
André Mendes

Fault-tolerance is critical in power electronics, especially in Uninterruptible Power Supplies, given their role in protecting critical loads. Hence, it is crucial to develop fault-tolerant techniques to improve the resilience of these systems. This paper proposes a non-redundant fault-tolerant double conversion uninterruptible power supply based on 3-level converters. The proposed solution can correct open-circuit faults in all semiconductors (IGBTs and diodes) of all converters of the system (including the DC-DC converter), ensuring full-rated post-fault operation. This technique leverages the versatility of Finite-Control-Set Model Predictive Control to implement highly specific fault correction. This type of control enables a conditional exclusion of the switching states affected by each fault, allowing the converter to avoid these states when the fault compromises their output but still use them in all other conditions. Three main types of corrective actions are used: predictive controller adaptations, hardware reconfiguration, and DC bus voltage adjustment. However, highly differentiated corrective actions are taken depending on the fault type and location, maximizing post-fault performance in each case. Faults can be corrected simultaneously in all converters, as well as some combinations of multiple faults in the same converter. Experimental results are presented demonstrating the performance of the proposed solution.


Sadhana ◽  
1987 ◽  
Vol 11 (1-2) ◽  
pp. 221-231 ◽  
Author(s):  
D. Basu ◽  
K. V. S. S. Prasad Rao ◽  
S. V. L. A. Varaprasad ◽  
T. Kurian ◽  
T. Jayasri ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3807 ◽  
Author(s):  
Haonan Sun ◽  
Rongyu He ◽  
Yong Zhang ◽  
Ruiyun Wang ◽  
Wai Hung Ip ◽  
...  

Today cloud computing is widely used in various industries. While benefiting from the services provided by the cloud, users are also faced with some security issues, such as information leakage and data tampering. Utilizing trusted computing technology to enhance the security mechanism, defined as trusted cloud, has become a hot research topic in cloud security. Currently, virtual TPM (vTPM) is commonly used in a trusted cloud to protect the integrity of the cloud environment. However, the existing vTPM scheme lacks protections of vTPM itself at a runtime environment. This paper proposed a novel scheme, which designed a new trusted cloud platform security component, ‘enclave TPM (eTPM)’ to protect cloud and employed Intel SGX to enhance the security of eTPM. The eTPM is a software component that emulates TPM functions which build trust and security in cloud and runs in ‘enclave’, an isolation memory zone introduced by SGX. eTPM can ensure its security at runtime, and protect the integrity of Virtual Machines (VM) according to user-specific policies. Finally, a prototype for the eTPM scheme was implemented, and experiment manifested its effectiveness, security, and availability.


Author(s):  
Ricardo Neisse ◽  
Alexander Pretschner ◽  
Valentina Di Giacomo

Usage control policies specify restrictions on the handling of data after access has been granted. The authors present the design and implementation of a framework for enforcing usage control requirements and demonstrate its genericity by instantiating it to two different levels of abstraction, those of the operating system and an enterprise service bus. This framework consists of a policy language, an automatic conversion of policies into enforcement mechanisms, and technology implemented on the grounds of trusted computing technology that makes it possible to detect tampering with the infrastructure. The authors show how this framework can, among other things, be used to enforce separation-of-duty policies. The authors provide a performance analysis.


Author(s):  
Andreas U. Schmidt ◽  
Nicolai Kuntze

Security in the value creation chain hinges on many single components and their interrelations. Trusted Platforms open ways to fulfil the pertinent requirements. This chapter gives a systematic approach to the utilisation of trusted computing platforms over the whole lifecycle of multimedia products. This spans production, aggregation, (re)distribution, consumption, and charging. Trusted Computing technology as specified by the Trusted Computing Group provides modular building blocks which can be utilized at many points in the multimedia lifecycle. We propose an according research roadmap beyond the conventional Digital Rights Management use case. Selected technical concepts illustrate the principles of Trusted Computing applications in the multimedia context.


Sign in / Sign up

Export Citation Format

Share Document