Nanomechanical Measurement Methods on the Basis of MEMS

2014 ◽  
Vol 651-653 ◽  
pp. 465-471
Author(s):  
Feng Luo ◽  
Liang Zhang ◽  
Zhi Kai Zhang

Recently microelectromechanical systems (MEMS) have found increasingly more applications in measurement technique in form of sensors and actuators. Here a report on the development and test of nanomechanical measurement methods and systems on the basis of MEMS will be delivered. A nanoforce actuator, a nanotensile test system which are all realized in the form of MEMS are in the focus. Design and numerical simulation of the nanoforce actuator with the help of finite element analysis (FEA) are detailed . In the article the principle of these measurement systems, the design, the manufacture and the assembly of the MEMS as well as first test results and achieved performance parameters are described.

2013 ◽  
Vol 834-836 ◽  
pp. 720-725 ◽  
Author(s):  
Hai Liang Wang ◽  
Wei Chang ◽  
Xin Lei Yang

Six reinforced concrete beams, including 4 beams strengthened with BFRP sheets at different layer of BFRP sheets and 2 control beams, are tested to investigate the effect of layer of BFRP sheets on the ultimate flexural resistance and load-deflection response of the pre-damaged concrete beams strengthened with BFRP sheets. Results show that the flexural resistance of pre-damaged concrete beams increases along with the BFRP sheets layer increasing,but the flexural resistance enhances the degree not to assume the linear relations to the enforcement layer.Numerical simulation of the pre-damaged concrete beams strengthened with BFRP sheets is conducted by ANSYS, and the results of numerical simulation are compared with those of the test results. It turns out that the results of numerical simulation are in good agreement with the test results.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2013 ◽  
Vol 815 ◽  
pp. 860-867
Author(s):  
Yu Gu ◽  
Shao Xiong Li ◽  
Rui Li ◽  
Qiang Li

Vibration results from situation when the inherent frequency close to the external exciting force during the operation of the motor, so accurate and effective calculation of the natural frequency of the motor has an important significance to damping noise. By numerical simulation model and the ANSYS finite element modal, the inherent frequencies were got of the motor and comparison results verify the effectiveness of the motor model. The effect of the modulus of elasticity of the softening layer between the motor and the ground to the inherent frequency was researched intensively, and puts forward related suggestions.


2011 ◽  
Vol 143-144 ◽  
pp. 437-442
Author(s):  
Bao Hong Tong ◽  
Yin Liu ◽  
Xiao Qian Sun ◽  
Xin Ming Cheng

A dynamic finite element analysis model for cylindrical roller bearing is developed, and the complex stress distribution and dynamic contacting nature of the bearing are investigated carefully based on ANSYS/LS-DYNA. Numerical simulation results show that the stress would be bigger when the element contacting with the inner or outer ring than at other times, and the biggest stress would appear near the area that roller contacting with the inner ring. Phenomenon of stress concentration on the roller is found to be very obvious during the operating process of the bearing system. The stress distributions of different elements are uneven on the same side surface of roller in its axis direction. Numerical simulation results can give useful references for the design and analysis of rolling bearing.


Author(s):  
Z.G. Feng ◽  
G. Montavon ◽  
C. Coddet ◽  
Z.Q. Feng ◽  
M. Domaszewski

Abstract The deformation and spreading of fully molten particles impacting onto a rough surface have been investigated by numerical simulation. A numerical technique, based on finite element analysis, was developed specifically for this simulation. The Lagrangian method with an automatic remeshing technique has been used to trace accurately the free surface of the molten matter and to improve the accuracy of the computation. A friction limiting condition at the particle substrate interface was introduced to describe the effects of the substrate surface roughness. This surface characteristic significantly influences the flattening degree, the flattening time, the spreading velocity of the liquid particle and its final shape.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402091868
Author(s):  
Shuang Jing ◽  
Anle Mu ◽  
Yi Zhou ◽  
Ling Xie

The seal is the key part of the cone bit. To reduce the failure probability, a new seal was designed and studied. The sealing performance and structure optimization of the X-O composite seal was analyzed and compared by finite-element analysis. The stress and contact pressure were analyzed to establish the main structural parameters that affect sealing performance and the direction of the structural optimization. By optimizing these structural parameters, including the height, and the radial and axial arc radii, an optimized structure is obtained. The results show that (1) the X-O composite seal can meet the seal requirement, the excessive height of the X seal ring is the root cause of the uneven distribution of stress, pressure, and distortion. (2) A new seal structure is obtained, the distribution of pressure and stress is reasonable and even, and the values of stress and pressure are reduced to avoid distortion and reduce the wear. Finally, the field test results of the X-O composite seal of cone bit showed that the service life of the bit bearing increased by 16% on average and the drilling efficiency increased by 11% on average compared with the original cone bit with the O seal ring.


2014 ◽  
Vol 14 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Oliver Döbrich ◽  
Thomas Gereke ◽  
Chokri Cherif

Abstract Numerical simulation tools are increasingly used for developing novel composites and composite reinforcements. The aim of this paper is the application of digital elements for the simulation of the mechanical behaviour of textile reinforcement structures by means of a finite element analysis. The beneficial computational cost of these elements makes them applicable for the use in large models with a solution on near micro-scale. The representation of multifilament yarn models by a large number of element-chains is highly suitable for the analysis of structural and geometrical effects. In this paper, a unit cell generating method for technical reinforcement textiles, using digital elements for the discretization, is introduced.


Sign in / Sign up

Export Citation Format

Share Document