LQG Control Design for Vehicle Active Anti-Roll Bar System

2014 ◽  
Vol 663 ◽  
pp. 146-151 ◽  
Author(s):  
Noraishikin Zulkarnain ◽  
Hairi Zamzuri ◽  
Saiful Amri Mazlan

The objective of this paper is to design a linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controllers for an active anti-roll bar system. The use of an active anti-roll bar will be analysed from two different perspectives in vehicle ride comfort and handling performances. This paper proposed the basic vehicle dynamic modelling with four degree of freedom (DOF) on half car model and are described that show, why and how it is possible to control the handling and ride comfort of the car, with the external forces also control strategies on the front anti-roll bar. By simulation analysis, the design model is validity and the performance under control of linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controller are achieved. Both two controllers are modeled in MATLAB/SIMULINK environment. It has to be determined which control strategy delivers better performance with respect to roll angle and the roll rate of half vehicle body. The result shows, however, that LQG produced better response compared to a LQR strategy.

2014 ◽  
Vol 575 ◽  
pp. 749-752 ◽  
Author(s):  
Noraishikin Zulkarnain ◽  
Hairi Zamzuri ◽  
Saiful Amri Mazlan

This paper presents and analyses a performance comparison between a Linear Quadratic Regulator (LQR) and Composite Nonlinear Feedback (CNF) controllers for an active anti-roll bar (ARB) system. The anti-roll bar system has to balance the trade-off involving ride comfort and handling performance. The basic vehicle dynamic modelling with four degree of freedom (DOF) on half car model is proposed. The design model is validity and the performances of roll angle and roll rate under control of LQR and CNF controller are achieved by using simulation analysis. Both two controllers are modeled in MATLAB/SIMULINK environment. It has to be determined which control strategy delivers better performance with respect to roll angle and the roll rate of half vehicle body to achieve this goal. The result shows, the CNF LQR fusion control strategy improve the performance compared to LQR and CNF control strategy.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Ivan Cvok ◽  
Mario Hrgetić ◽  
Matija Hoić ◽  
Joško Deur ◽  
Davor Hrovat ◽  
...  

Abstract Autonomous vehicles (AVs) give the driver opportunity to engage in productive or pleasure-related activities, which will increase AV’s utility and value. It is anticipated that many AVs will be equipped with active suspension extended with road disturbance preview capability to provide the necessary superior ride comfort resulting in almost steady work or play platform. This article deals with assessing the benefits of introducing various active suspensions and related linear quadratic regulator (LQR) controls in terms of improving the work/leisure ability. The study relies on high-performance shaker rig-based tests of a group of 44 drivers involved in reading/writing, drawing, and subjective ride comfort rating tasks. The test results indicate that there is a threshold of root-mean-square vertical acceleration, below which the task execution performance is similar to that corresponding to standstill conditions. For the given, relatively harsh road disturbance profile, only the fully active suspension with road preview control can suppress the vertical acceleration below the above critical superior comfort threshold. However, when adding an active seat suspension, the range of chassis suspension types for superior ride comfort is substantially extended and can include semi-active suspension and even passive suspension in some extreme cases that can, however, lead to excessive relative motion between the seat and the vehicle floor. The design requirements gained through simulation analysis, and extended with cost and packaging requirements related to passenger car applications, have guided design of two active seat suspension concepts applicable to the shaker rig and production vehicles.


2019 ◽  
Vol 16 (2) ◽  
pp. 71-81
Author(s):  
David Javier Muñoz-Aldana ◽  
Carlos Alberto Gaviria-López

This article presents a virtual environment based on co-simulation between MatLab and MSC Adams, allowing simulation, analysis, development and validation of control strategies for tracking of position trajectories of a Remotely Operated Vehicle (ROV). The simulation results in the horizontal plane show that it is possible, in an uncomplicated way, to construct a virtual environment, which allows observing realistic movements when the forces exerted on an ROV are provided. Taking advantage of the properties of co-simulation, the experiences in this work show that this simulation strategy is very suitable for analysis purposes and control design, allowing researchers and professionals the wide use of control tools available in MATLAB for this end. In this work, a robust linear quadratic regulator (LQR) with integral action has been used to evaluate the performance of the proposed virtual environment for tracking of position trajectories. To validation purposes, widely used trajectories in naval study designs were employed such as the Zig -Zag shaped and the Circular shaped trajectories. Simulation results show that the integration of both, MatLab and MSC Adams, effectively addressees the problem of evaluation of performance of control strategies in the virtual environment. The presented approach allows gaining experience about the challenges of this kind of control problems, before dealing with the complex aspects of tuning in real experimental environments, avoiding losses and cost overruns for underwater robotics projects.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Joshua Sunder David Reddipogu ◽  
Vinodh Kumar Elumalai

This paper presents an adaptive inertia weight particle swarm optimization (AIWPSO) employed for solving the multiobjective weight optimization problem of LQR applied for the vehicle active suspension system (ASS). To meet the competing control objectives of ASS including the ride comfort, road handling, and suspension travel, the state feedback controller design for ASS is formulated as an optimization problem and an improved PSO is employed for finding the optimal weights of the linear-quadratic regulator (LQR). Specifically, for solving the premature convergence of the particles and imbalance between exploration and exploitation capabilities of PSO, an adaptive inertia weight that updates the velocity of the particles based on the success rate is used. The efficacy of the AIWPSO-tuned LQR is experimentally tested on a quarter-car ASS plant using the hardware in loop (HIL) testing for an uneven road surface. Experimental results highlight that, compared to conventional PSO-tuned LQR, the proposed scheme can significantly minimize the vehicle body acceleration due to irregular road profile while guaranteeing the minimum tire friction for passenger safety. The ISO 2361-1 standards adopted to evaluate the ride and health criteria substantiate that the proposed scheme reduces the vibration dose value by 25.34% for a bumpy road profile. Moreover, the cumulative power spectral density (CPSD) of vehicle body acceleration assessed in both low- and high-frequency regions manifests the significant improvement in the ride comfort.


2011 ◽  
Vol 2-3 ◽  
pp. 1067-1070
Author(s):  
Hai Jun Xing ◽  
Shao Pu Yang ◽  
Yong Jun Shen

This research aims at the vibration control of vehicle seat suspension system. A three degree of freedom quarter vehicle model is used for semi-active control system in which a magnetorheological damper (MRD) is installed at the position between the vehicle body and the seat. A fully active linear quadratic regulator (LQR) control strategy is used to determine the optimized control force which is then matched by MRD to compute the semi-active control result. Computation result proves that semi-active control with MRD can alleviate the vehicle seat acceleration to improve ride comfort.


2018 ◽  
Vol 68 (1) ◽  
pp. 61-68
Author(s):  
Rame Likaj ◽  
Ahmet Shala

Abstract The paper deals with the optimal design and analysis of quarter car vehicle suspension system based on the theory of linear optimal control because Linear Quadratic Gaussian (LQG) offers the possibility to emphasize quantifiable issues like ride comfort or road holding very easily by altering the weighting factor of a quadratic criterion. The theory used assumes that the plant (vehicle model + road unevenness model) is excited by white noise with Gaussian distribution. The term quadratic is related to a quadratic goal function. The goal function is chosen to provide the possibility to emphasize three main objectives of vehicle suspensions; ride comfort, suspension travel and road holding. Minimization of this quadratic goal function results in a law of feedback control. For optimal designs are used the optimal parameters which have been derived by comparison of two optimisation algorithms: Sequential Quadratic Program (SQP) and Genetic Algorithms (GA's), for a five chosen design parameters. LQG control is considered to control active suspension for the optimal parameters derived by GA's, while the main focus is to minimise the vertical vehicle body acceleration


Author(s):  
Sharifah Munawwarah Syed Mohd Putra ◽  
Fitri Yakub ◽  
Mohamed Sukri Mat Ali ◽  
Noor Fawazi Mohd Noor Rudin ◽  
Zainudin A. Rasid ◽  
...  

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Oscar Andrew Zongo ◽  
Anant Oonsivilai

This paper presents a comparison between a proportional-integral controller, low pass filters, and the linear quadratic regulator in dealing with the task of eliminating harmonic currents in the grid-connected photovoltaic system. A brief review of the existing methods applied to mitigate harmonic currents is presented. The Perturb & Observe technique was employed for maximum power point tracking. The PI control, low pass filters, and the linear quadratic regulator are discussed in detail in terms of their control strategies. The grid current was analyzed in the system with all three of the controllers applied to control the voltage source inverter of the solar photovoltaic system connected to the grid through an L filter and LCL filter and simulated in MATLAB/SIMULINK. The simulation results obtained have proven the robustness of the linear quadratic regulator over other methods. The technique lowers the grid current total harmonic distortion from 7.85% to 2.13%.


Author(s):  
Mingchun Liu ◽  
Yuanzhi Zhang ◽  
Juhua Huang ◽  
Caizhi Zhang

This study addresses the challenges of ride comfort improvement and in-wheel-motor vibration suppression in in-wheel-motor-driven electric vehicles. First, a mathematical model of a quarter vehicle equipped with a dynamic vibration absorber and an active suspension is developed. Then, a two-stage optimization control method is proposed to improve the coupled dynamic vibration absorber–suspension performance. In the first stage, a linear quadratic regulator controller based on particle swarm optimization is designed for the dynamic vibration absorber to suppress the in-wheel-motor vibration, in which the dynamic vibration absorber parameters and linear quadratic regulator controller weighting factors are optimally matched by using the particle swarm optimization algorithm. In the second stage, a finite-frequency H∞ controller is designed in the framework of linear matrix inequality optimization for the active suspension to improve vehicle ride comfort. Suspension performance factors, including suspension working space and road-holding ability, are taken as constraints in both stages. The proposed method simultaneously improves vehicle ride comfort and suppresses in-wheel-motor vibration. Finally, the effectiveness and superiority of the proposed method are illustrated through comparison simulations.


2020 ◽  
Vol 23 (3) ◽  
pp. 593-601
Author(s):  
Vu Van Tan ◽  
Nguyen Duy Hung

Introduction: Tractor semi-trailer vehicles are playing an increasingly important role in the global freight chain. However, due to the heavy total load and height of the center of gravity, this type of vehicle is often at a higher risk of instability than other vehicles. This paper focuses on improving the vehicle roll stability by using an active anti-roll bar system. Methods: The Linear Quadratic Regulator (LQR) approach is used for this purpose with the control signal being the torque generated by the active anti-roll bar system. In order to synthesize the controller, the roll angle of the vehicle body and the normalized load transfer at all axles of the tractor semi-trailer vehicle are considered as the optimal goals. Results: The simulation results in time and frequency domains clearly show the effectiveness of the proposed method for the active anti-roll bar system, because the reduction of the desired criterias is about 40% less when compared to a vehicle using the passive anti-roll bar system. Conclusions: The effectiveness of the active anti-roll bar system on improving the vehicle roll stability, has been verified in this theoretical study with the LQR optimal controller. This is an important basis for conducting more in-depth studies and future experiments.


Sign in / Sign up

Export Citation Format

Share Document