Leaching Behavior of Chlorpyrifos and its Main Metabolite TCP through 5 Types of Soil Columns in Laboratory Conditions

2014 ◽  
Vol 675-677 ◽  
pp. 175-180 ◽  
Author(s):  
Bao Li Sun ◽  
Hong Shan ◽  
Yi Wei Dong ◽  
Jin Li Huang ◽  
Cheng Feng Tong

By applying the OECD soil column method, the leaching behavior of chlorpyrifos and it main metabolite, 3,5,6-trichloro-2-pyridinol (TCP), in five types of saturated soil was compared. The results show the following: (1) Chlorpyrifos can be retained in the five types of saturated soil, and the rate of chlorpyrifos residues in the five types of soil columns are 86.9% (Black soil), 80.3% (Red soil), 77.9% (Limestone soil), 74.7% (fluvo-aquic soil) and 68.9% (Purple soil) of the application amount; (2) No chlorpyrifos was found in the leachate; (3) TCP could fully migrate in the five types of 30-cm-long soil columns and the TCP residues in these columns are 34.4% (Black soil), 29.6% (Red soil), 24.8% (Limestone soil),14.1% (fluvo-aquic soil) and 10.3% (Purple soil) of the application amount; (4) The average concentrations of TCP in the 400 mL leaching solution were from 0.31 μg·mL-1to 0.23 μg·mL-1; and (5) The Kocand GUS values of the TCP in the five types of soil showed that TCP has a great leaching risk compared with its parent compound of chlorpyrifos.

2012 ◽  
Vol 26 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Amit J. Jhala ◽  
Megh Singh

Soil-applied herbicides are commonly used for broad-spectrum residual weed control in Florida citrus. Groundwater contamination from some soil-applied herbicides has been reported in citrus growing areas in Florida. Indaziflam is a new soil-applied herbicide recently registered for broad-spectrum weed control in Florida citrus. There is no information available on leaching behavior of indaziflam in sandy soil. Experiments were conducted to compare leaching of indaziflam with five commercially used residual herbicides in a Florida Candler soil under simulated rainfall of 5 or 15 cm ha−1. Herbicide movement down soil columns was measured by visually evaluating injury and harvesting aboveground biomass of the bioassay species annual ryegrass. Ryegrass was not injured and plant biomass was not affected beyond 30 cm when indaziflam at a recommended rate of 73 g ai ha−1was leached through the soil column. Leaching of indaziflam increased with increasing amounts of rainfall. For example, indaziflam leached up to 12.2 ± 0.8 cm (values are expressed ± SD) and 27.2 ± 2.6 cm at 5 and 15 cm ha−1rainfall, respectively. The herbicide ranking from high to low mobility at 15 cm ha−1of rainfall was bromacil = norflurazon > indaziflam > simazine = pendimethalin > diuron. Overall results suggested that indaziflam leaching was limited in Florida Candler soil in this study; however, field experiments are required to confirm the leaching of indaziflam under natural rainfall situation.


2021 ◽  
Author(s):  
Minghai Wei ◽  
Wenting Li ◽  
Jie Tang ◽  
Jia Zhang ◽  
Honghan Chen

Abstract Chromite ore processing residue (COPR) storage sites are widely distributed all over the world, causing serious soil and groundwater pollution. However, the differences in soil constituents and properties between different regions are significant, and the dynamic migration and transformation of Cr(VI) in different types of soil under alkaline condition of the COPR site is still unclear. In this study, the typical black soil, red soil and loess in different regions of China were chosen to investigate the adsorption kinetics and thermodynamics of Cr(VI) under the original pH conditions of the soil, and then the alkaline Cr(VI) solution was introduced into the soil column to simulate the dynamic migration and transformation process of Cr(VI) at COPR sites. According to the results, the Cr(VI) breakthrough curve predicted by the solid-liquid distribution coefficient Kd based on the static isotherm adsorption experiments significantly underestimated and overestimated the retention effect of black soil and red soil on Cr(VI) dynamic migration, respectively. For the black soil, the retention of Cr(VI) was dominated by Cr(VI) reduction, which is a slow reaction compared with Cr(VI) adsorption. Therefore, the reduction kinetics process during the column experiment cannot be neglected. In respect to the red soil, the outlet Cr(VI) concentration turned to be higher than the inlet concentration with the soil alkalization, which indicated that the adsorbed Cr(VI) desorbed again, and this is the main reason for the overestimation of Cr(VI) retention effect by the red soil. This study shows that the environmental risks of Cr in different types of soil are quite different, mainly related to the valence and occurrence form of Cr that governed by the soil constituents and properties. In addition, the stable form of Cr in the black soil column after the reaction indicates that the soil organic matter can be used as a potential environmentally friendly remediation material for Cr(VI) contaminated soils at COPR sites.


2010 ◽  
Vol 18 (4) ◽  
pp. 683-688 ◽  
Author(s):  
Chao ZHANG ◽  
Yu-Ping CHE ◽  
Zhong-Pei LI

2019 ◽  
Vol 322 (2) ◽  
pp. 1085-1096
Author(s):  
Hui Zhang ◽  
Wenting Yu ◽  
Zhifen Wang ◽  
Mingbiao Luo ◽  
Shujuan Liu ◽  
...  
Keyword(s):  

Soil Science ◽  
1976 ◽  
Vol 121 (6) ◽  
pp. 364-372 ◽  
Author(s):  
J. L. STARR ◽  
J.-Y. PARLANGE

Soil Research ◽  
1989 ◽  
Vol 27 (1) ◽  
pp. 17 ◽  
Author(s):  
Y Sawada ◽  
LAG Aylmore ◽  
JM Hainsworth

Computer-assisted tomography (CAT) applied to gamma-ray attenuation measurements has been used to develop an index termed the soil water dispersion index (SOWADIN), which describes quantitatively the amount and distribution of water in soil columns. The index, which is determined by classifying pixels in a scanned slice into three categories according to their attenuation coefficients, contains two numerical values. The first value corresponds to the water content of the scanned slice and the second value is a measure of the dispersion of the water throughout the slice. Artificially wetted zones were created in soil columns to give one-third of the scanned layer wetted with various patterns of wetted-area distribution. The SOWADIN values obtained accurately reflected the differences in water distribution associated with the different patterns. Application of SOWADIN to columns of a water-repellent sand before and after treatment with a soil-wetting agent clearly illustrates both the increase in water content and improvement in water distribution in the soil column following treatment.


RBRH ◽  
2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Jaqueline Vígolo Coutinho ◽  
Cristiano das Neves Almeida ◽  
Eduardo Bernardo da Silva ◽  
Catalin Stefan ◽  
Gilson Barbosa Athayde Júnior ◽  
...  

ABSTRACT Managed Aquifer Recharge (MAR) is a useful tool for the treatment and use of sewage effluent because it complements conventional treatment, recovers the aquifer and minimizes risk of saltwater intrusion. This study aims to investigate technical data to determine the treatment of wastewater stabilization pond effluent using undisturbed soil columns collected from a coastal watershed study area within the BRAMAR (BRAzil Managed Aquifer Recharge) project. The treatment efficiency was monitored by measuring physico-chemical parameters (BOD 5, COD, DOC, TSS, NH3 and NO3) in two columns filled with undisturbed sandy soil in which sewage effluent was infiltrated under unsaturated condition for 72 days with an average input flow of 10 mm h-1. Results indicated reduction greater than 60% of organic matter, suspended solids and ammoniacal nitrogen. However, high concentrations of nitrate in the outflow were detected originating from nitrification of ammoniacal nitrogen. Moreover, difficulties in relation to soil clogging were observed. Furthermore, this study brought relevant contributions to understanding the influence of the infiltration rate and ability to treat effluent from wastewater stabilization ponds using undisturbed soil columns. Future research should be undertaken to improve the pretreatment methods and the operation of a MAR system in the study area.


2021 ◽  
Author(s):  
Patricia Ortega-Ramirez ◽  
Valérie Pot ◽  
Patricia Laville ◽  
Steffen Schlüter ◽  
Dalila Hadjar ◽  
...  

<p>N<sub>2</sub>O emission in soils is a consequence of the activity of nitrifying and denitrifying microorganisms and potentially abiotic processes. However, the <span>large</span> microscale variability of the soil characteristics that influence these processes and in particular the location of anoxic microsites, limits prediction efforts. Better understanding of denitrification activity on microscopic scales is required to improve predictions of N<sub>2</sub>O emissions.</p><p>This study explored the role of soil microstructure on N<sub>2</sub>O emission. To fulfill this objective we sampled 24 soil columns (5 cm diameter, 6 cm height) in the surface layer of a same plot in a cultivated soil (Luvisol, La Cage, Versailles, France). The soil samples were saturated with a solution of ammonium nitrate (NH<sub>4</sub>NO<sub>3</sub>), and equilibrated at a matrix potential of -32 cm (pF 1.5). The emitted fluxes of N<sub>2</sub>O were measured during 7 days. At the end of the experiment, the soil columns were scanned in a X-ray micro tomograph, at the University of Poitiers. A 32 µm voxel resolution was achieved for the 3D reconstructed images.</p><p>In order to reduce noise and segment the 3D images, the same protocol was implemented for all columns. The reduction of noise consisted of passing a non-local mean filter, a non-sharp mask and a radial correction. Such combination of steps succeeded in removing both ring artifacts and the radial dependence of the voxel values. Due to the variety of material densities in the soil, a local segmentation based on the watershed method was implemented to classify the soil <span>constituents</span> in four <span>classes (based on its density value)</span>: air, water and organic matter (OM), soil matrix and minerals. This method is good for detecting thin pores and avoids missclassification of voxels undergoing partial volume effect, which can lead to false organic coatings around macropores.</p><p>The soil columns exhibited a large variability of accumulated N<sub>2</sub>O after 7 days (from 107 to 1940 <span>µgN kg</span><sup><span>-1</span></sup><span> d.w. soil</span>). The size of OM clusters varied between a couple and up to t<span>housands</span> of voxels. No correlation was found between the emission of N<sub>2</sub>O and the porosity, nor between the N<sub>2</sub>O emission and the connectivity of the air phase. Based on the <span>premise</span> that the less accessible is the oxygen to the OM, the bigger should be the N<sub>2</sub>O emission of the soil column, we proposed and computed a microscopic spatial descriptor, I<sub>gd</sub>, based on the notion of the geodesic distance between <span>clusters</span> of OM and air for each soil column 3D image. We expect to find a correlation between I<sub>gd</sub> and the <span>N</span><sub><span>2</span></sub><span>O emission.</span></p>


1985 ◽  
Vol 17 (10) ◽  
pp. 197-199 ◽  
Author(s):  
P. H. Jørgensen

In two different unsaturated soil columns percolated with artificial rainwater under simulated aerated conditions, transport of coxsackievirus B3 and adenovirus 1 below 3.5 cm under the soil surface could not be demonstrated. The viruses were applied to the columns as seeded sewage sludge. Under saturated conditions transport of water-suspended coxsackievirus B3 was faster in a soil column with sandy loam soil than in a diluvial sand column.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
P.D. SOUZA ◽  
L.D. TUFFI SANTOS ◽  
W.G. MONTES ◽  
L.R. CRUZ ◽  
A.M. AZEVEDO

ABSTRACT: Biosolids are residues from the treatment of urban fluids used as a source of nutrients for agricultural and forestry crops. The organic matter contained in this residue and its chemical characteristics may interfere with the behavior of herbicides in the soil. The objective of this study was to evaluate the influence of biosolids on the potential for leaching herbicides mimicking auxin. Two simultaneous experiments were performed: a leaching test of picloram + 2.4-D in soil column with addition of thermally treated biosolids or solarized biosolids and another one to evaluate the effect of leachate application from the leaching tests under inert material. Each type of biosolid was incorporated in sandy soil in the proportions of 0%, 50%, 100% and 150% of the maximum recommended dose for subsurface fertilization for eucalyptus. The soil was conditioned in PVC columns and the herbicide columns based on picloram + 2.4-D (Turuna® Commercial Formulation), corresponding to 240 g L-1 of 2.4-D + 64 g L-1 of picloram at a dose of 3.5 L ha-1 of the commercial product. The columns were submitted to rain simulation and the resulting leachate was collected, followed by its application in sand-filled pots. The Cucumis sativus was sown along the profile of the soil columns and in the pots. The incorporation of the biosolid, independently of the type and dose tested did not interfere in the leaching potential of picloram + 2.4-D. Symptoms of intoxication were observed along all soil columns and pots. Therefore this residue is not very effective for the resolution of environmental problems caused by the leaching of auxin-mimicking herbicides in the soil.


Sign in / Sign up

Export Citation Format

Share Document