Probabilistic Modeling of Fatigue Damage Accumulation under Spectrum Loading

2014 ◽  
Vol 684 ◽  
pp. 169-175
Author(s):  
Xian Min Chen ◽  
Hong Na Dui

A probabilistic methodology for modeling fatigue damage accumulation and fatigue life under variable amplitude loading is proposed in this paper. With probabilistic modifications, the calculative consistency between fatigue damage and life is achieved in the model and the load sequence effects are properly accounted for variable amplitude loading. This damage model overcomes the inherent deficiencies in the linear damage accumulation rule but still preserves its simplicity for engineering application. With Monte Carlo sampling method, numerical verification of this model is conducted under two-level spectrum loading. The predicted probabilistic distributions of fatigue life are validated by the fatigue tests on Al-alloy straight lugs.

Author(s):  
Zhaochun Peng ◽  
Hong-Zhong Huang ◽  
Huiying Gao ◽  
Zhiqiang Lv ◽  
Shun-Peng Zhu

In the case of variable amplitude loading, fatigue damage accumulation theory is closely related to loading histories, such as load sequences, load interactions, and so on. Due to the lack of load histories, there may be a large deviation with the reality for linear damage rule (Miner rule). Although many non-linear fatigue damage accumulation models can deal with the effect of load sequences, load interaction effect cannot be ignored and it plays an important role in damage accumulation behavior. This paper describes the damage evolution behavior based on nonlinear damage rule under variable amplitude loading. A new method to describe the load interaction effects is proposed, it is assumed that the load ratio between adjacent stress levels is used to present this phenomenon. Thereafter, the method is introduced to a non-linear damage model, and a modified model is developed to predict the residual lifetime. Four categories of experimental data sets from literatures are employed to investigate the validity of the proposed model. The results indicate that the modified model shows a good agreement between experimental data and theoretical results. It is also found that the modified model demonstrates an improvement in prediction accuracy over the primary model and Miner rule. Furthermore, the modified model can be easily implemented with the use of Wöhler curve only.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1030 ◽  
Author(s):  
Jarosław Szusta ◽  
Andrzej Seweryn

This article presents an approach related to the modeling of the fatigue life of constructional metal alloys working under elevated temperature conditions and in the high-amplitude load range. The article reviews the fatigue damage accumulation criteria that makes it possible to determine the number of loading cycles until damage occurs. Results of experimental tests conducted on various technical metal alloys made it possible to develop a fatigue damage accumulation model for the LCF (Low Cycle Fatigue) range. In modeling, the material’s damage state variable was defined, and the damage accumulation law was formulated incrementally so as to enable the analysis of the influence of loading history on the material’s fatigue life. In the proposed model, the increment of the damage state variable was made dependent on the increment of plastic strain, on the tensile stress value in the sample, and also on the actual value of the damage state variable. The model was verified on the basis of data obtained from experiments in the field of uniaxial and multiaxial loads. Samples made of EN AW 2024T3 aluminum alloy were used for this purpose.


1988 ◽  
Vol 31 (3) ◽  
pp. 53-63
Author(s):  
Ronald Lambert

Simple closed-form expressions have been derived to predict fatigue life, damage accumulation, and other fatigue parameters of interest for structural elements with combined sinusoidal (sine) and narrowband Gaussian random stresses. These equations are expressed in common engineering terms. The sine and random only stress situations are special cases of the more general combined sine/random stress situation. They also have application for establishing vibration workmanship screens. Numerical examples are also included.


2020 ◽  
Vol 82 (2) ◽  
pp. 168-188
Author(s):  
I.A. Volkov ◽  
L.A. Igumnov ◽  
D.N. Shishulin ◽  
V.A. Eremeev

The paper considers processes of fatigue life of materials and structures in the exploitation conditions characterized by multiparametric nonstationary thermal-mechanical effects In the framework of mechanics of damaged media, a mathematical model is developed that describes processes of thermal-plastic deformation and fatigue damage accumulation in materials with degradation according to low- and high-cycle fatigue mechanisms (accounting for their interaction). The model consists of three interconnected parts: relations determining cyclic thermal-plastic behavior of a material, accounting for its dependence on the failure process; equations describing kinetics of fatigue damage accumulation; a strength criterion of the damaged material. The version of the defining relations of thermal plasticity is based on the notion of the yield surface and the principle of orthogonality of the plastic strain rate vector to the yield surface at the loading point and reflects the main effects of the process of cyclic plastic deformation of the material for arbitrarily complex trajectories of combined thermal-mechanical loading. The version of kinetic equations of fatigue damage accumulation is based on introducing a scalar parameter of damage degree and on energy-based principles, and takes into account the main effects of the nucleation, growth and merging of microdefects under arbitrarily complex loading regimes. A generalized form of an evolutionary equation of fatigue damage accumulation in low-cycle and high-cycle fatigue regions is introduced. The condition when the damage degree reaches its critical value is taken as the strength criterion of the damaged material. To assess the reliability and the scope of applicability of the developed defining relations of mechanics of damaged media, processes of thermal-plastic deformation and fatigue damage accumulation have been numerically analyzed, and the numerical results obtained have been compared with the data of full-scale experiments for a particular applied problem. The effect of the dropping frequency of a distillate on thermal cyclic fatigue life of the material of a heated surface of a tube has been numerically analyzed. The computational results for the fatigue damage accumulation processes under thermal pulsed loading are compared with experimental data. It is shown that the developed model describes both qualitatively and, accurately enough for engineering purposes, quantitatively the experimental data and can be effectively used for evaluating thermal-cyclic fatigue life of structures working in the conditions of multiaxial non-proportional regimes of combined thermal-mechanical loading.


Sign in / Sign up

Export Citation Format

Share Document