Research on Behavior of Ultra-High Toughness Cementitious Composites Reinforced Frame Joints

2011 ◽  
Vol 71-78 ◽  
pp. 794-798
Author(s):  
Jun Su ◽  
Shi Lang Xu ◽  
Dong Tao Xia

In this article, through the seismic experimental analysis for six frame joints of ultra-high toughness cementitious composites, the load-carrying capacity, hysteretic behavior, energy dissipation and ductility of new joints are studied under different axial compressive ratio and the stirrups space. The experimental results show that the UHTCC joints have higher anti-cracking capacity and shear ductility. The UHTCC can reduce or even eliminate the amount of shear stirrups of the joint core. According to the analysis for the experiments, a theoretical calculating formula of shearing capacity is presented, whose calculating results agree well with the experimental results.

2017 ◽  
Vol 79 (5) ◽  
Author(s):  
Nahushananda Chakravarthy ◽  
Sivakumar Naganathan ◽  
Jonathan Tan Hsien Aun ◽  
Sreedhar Kalavagunta ◽  
Kamal Nasharuddin Mustapha ◽  
...  

Cold formed steel differ from hot rolled steel by its lesser thickness and weight. The cold formed steel applicable in roof purlin, pipe racks and wall panels etc. Due its lesser wall thickness the cold formed steel member subjected to buckling. The enhancement of load carrying capacity of the cold formed steel member can be achieved by external strengthening of CFRP. In this study cold formed channel members connected back to back to form I shaped cross section using screws. These built up beam members were 300mm, 400mm and 500mm in length with 100mm screw spacing and edge distance of 50mm were chosen for testing. CFRP fabric cut according to length, width of built up beams and wrapped outer surface of beam using epoxy resin. Experiments were carried out in two sets firstly plain built up beams and secondly CFRP wrapped beams. The test results shows that increased load carrying capacity and reduction in deflection due to CFRP strengthening. Experimental results were compared with AISI standards which are in good agreement. Experimental results shows that CFRP strengthening is economic and reliable.


Author(s):  
Wei Wang ◽  
Weijun Xu ◽  
Xiongliang Yao ◽  
Nana Yang

This paper focuses on the post-ultimate strength behavior of sandwich plates. With widely application of the laminate on the ship and offshore structures, the post-ultimate strength behavior is becoming more important for safety evaluation of structures. Since the post-ultimate strength behavior can reflect the collapse extent of sandwich plate when subjected to extreme loads. A sandwich plate was modeled by FEM, its load-displacement relationship was obtained and its collapse characteristics were analyzed. The load-displacement relationship indicates its post-ultimate strength behavior, which is shown as that the load carrying capacity has a rapidly reduction when the ultimate strength is exceeded, and that the failure modes of the sandwich plate are determined by the parameter of individual layer. The simulation results were validated against experimental results. Conclusions are drawn: the displacement of sandwich plate under axial compression increased slowly before reaching the ultimate strength, once the ultimate strength was exceeded, the loads exerted on the structures sharply decreased with slowly increased displacement until the plate cracked. The simulation results have a good agreement with the experimental results. The mainly failure modes of sandwich plates can be interpreted as delamination between skin & core and core compression fracture, which are typical failure modes in engineering. The stiffness of sandwich structures decreased due to the interlaminar cracking or skin fracture, further the load carrying capacity decreased, which is of significance for guiding the design of sandwich structures.


2006 ◽  
Vol 326-328 ◽  
pp. 1805-1810 ◽  
Author(s):  
Young Ho Kim ◽  
Seung Sik Lee ◽  
Jae Ho Jung ◽  
Soon Jong Yoon

This paper presents the results of an investigation on the force transfer mechanism in an embedded column base of a composite structure. In the experimental program, eighteen push-out specimens were tested. The factors influencing the mechanism of force transfer were the amount of confining reinforcement, compressive strength of concrete, and diameter of stud connectors. The results of experiment indicated that force transfer could be characterized into two stages, and the factors governing each stage were identified. The first stage was governed by the bond strength between the steel column base and the concrete. The second stage begun after chemical debonding and was governed by the shear strength of stud connectors as well as the frictional strength between the steel and the concrete. Based on the experimental results, the equations to estimate the bond strength, the friction strength, and the shear strength of stud connectors were proposed. The load carrying capacity of an embedded steel column base could be predicted by taking the sum of the shear strength of stud connectors and the friction strength. The predicted load carrying capacity was found to agree well with the experimental results over various range of concrete stress.


1960 ◽  
Vol 82 (3) ◽  
pp. 505-511 ◽  
Author(s):  
R. C. Elwell ◽  
B. Sternlicht

This paper presents theoretical and experimental analysis of two types of circular hydrostatic thrust bearings, using incompressible lubricants. Design equations for load-carrying capacity, stiffness, and flow, are given for three different types of flow restriction—orifice, capillary, and constant flow. Experimental verification of the equations is shown. It is seen that each method of restriction imparts its own characteristics on the bearing performance. Constant flow, for instance, results in the stiffest bearing under certain conditions, and capillary restriction is unaffected by temperature changes.


1989 ◽  
Vol 111 (3) ◽  
pp. 406-412 ◽  
Author(s):  
H. Hashimoto

This paper describes a study on the performance characteristics of sector-shaped, high-speed thrust bearings subjected to the effects of both turbulence and fluid inertia forces. The basic lubrication equations are derived by integrating the momentum and continuity equations in the polar coordinates including the full inertia terms throughout the film thickness; and a numerical calculation technique combining the control volume integration and the Newton-Raphson linearization method is applied to solve the equations. The static characteristics such as the load carrying capacity and the pressure center are calculated for various values of pad extent angle and inner-to-outer radius ratio of a pad. The theoretical results of the load carrying capacity are compared with the experimental results. It was found that the fluid inertia forces have significant effects on the static characteristics of the bearings. Good agreement was obtained between theoretical and experimental results.


2020 ◽  
Vol 124 (1276) ◽  
pp. 872-887
Author(s):  
N. Matthews ◽  
R. Jones ◽  
D. Peng ◽  
N. Phan ◽  
T. Nguyen

ABSTRACTThis paper focuses on the problem of skin corrosion on the upper wing surfaces of rib-stiffened aircraft. For maritime and military transport aircraft this often results in multiple co-located repairs. The common approach to corrosion damage in operational aircraft is to blend out the corrosion and rivet a mechanical doubler over the region. In particular this paper describes the results of a combined numerical and experimental investigation into the ability of the additive metal technology, Supersonic Particle Deposition (SPD), to restore the load-carrying capacity of rib-stiffened wing planks with simulated skin corrosion. The experimental results reveal that unrepaired skin corrosion can result in failure by yielding. The experimental results also reveal that SPD repairs to skin corrosion can restore the stress field in the structure, and can ensure that the load-carrying capability of the repaired structure is above proof load.


Buildings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 203
Author(s):  
Giuseppe Santarsiero ◽  
Angelo Masi

This study is devoted to experimentally investigate the seismic behaviour of reinforced concrete (RC) wide beam–column joints equipped with a steel jacketing seismic strengthening solution. To this end, three identical full-scale specimens have been tested under cyclic loading, one in the as-built condition and two after the application of the strengthening solutions. Details of selected solutions are described in the paper along with the experimental results which confirm how the application of simple and feasible steel interventions can effectively improve the seismic capacity of wide beam–column connections in RC frames, especially in terms of lateral load carrying capacity and energy dissipation.


2013 ◽  
Vol 438-439 ◽  
pp. 1529-1532
Author(s):  
Ya Bin Yang ◽  
Wan Lin Cao

Concrete filled steel tube (CFST) got a good application in actual project. In order to further the seismic performance of the CFST, experiment was carried on two 1/5 scale models, which included one CFST frame, one CFST truss. Based on the experimental study, load-carrying capacity, stiffness, ductility, hysteretic property, energy dissipation and failure phenomena of each model were analyzed. The study shows that the seismic performance of CFST truss has high bearing capacity, stiffness, energy dissipation capacity and good ductility.


Sign in / Sign up

Export Citation Format

Share Document