Experimental Study on Progressive Collapse Resistance of Reinforced Concrete Frame Structures

2011 ◽  
Vol 71-78 ◽  
pp. 871-875
Author(s):  
Yong Kang Zheng ◽  
Jin Gang Xiong ◽  
Zhao Qiang Wu ◽  
Yi Nong He

The progressive collapse of the frame structure is simulated with testing a 1/3 scale, 4×2-bay and 3-storey reinforced concrete spatial frame in this paper. The experimental model was designed according to the non-seismic resistance demand, and the middle-side column of the bottom floor was replaced by a mechanical jack to simulate its initial local damage. Based on the experimental results, the applied load process and the load transferring mechanism of the model frame are analyzed. The progressive collapse-resisting performance of reinforced concrete frames with non-seismic demand are obtained.

2011 ◽  
Vol 243-249 ◽  
pp. 717-723
Author(s):  
Jin Gang Xiong ◽  
Yon Kang Zheng ◽  
Guan Min Cai ◽  
Yan Li

In this paper the analysis is conducted to investigate the progressive collapse resistance of typical reinforced concrete(RC) multi-story frame structures, which are designed according to the China code for seismic design of buildings. The analysis results show that the progressive collapse resistance will be enhanced with the seismic fortification intensity increasing. The progressive collapse resistance of RC frame structures with low seismic fortification intensity are poor. This implies that as for RC frame structures with low seismic or non-seismic demand, close attention must be paid to continuity and ductility in order to prevent progressive collapse.


2011 ◽  
Vol 243-249 ◽  
pp. 1210-1218
Author(s):  
Guo Hui Huang ◽  
Zheng He

The beam-to-beam impact behavior during the progressive collapse progress of reinforced concrete frame structures under severe ground motions is studied in which three types of impact are included, i.e. 1) contact-impact between one-end failed active beam and intact passive beam; 2) contact-impact between two-end failed active beam and intact passive beam, and 3) contact-impact of one-end failed active beam and one-end failed passive beam. As the first step, the initial impact conditions are established based on the principles of the kinematics and the structural dynamics. Then, the velocities of the beams at the impact instant and the locations of the impact would occur are derived. A so-called impact mass factor is introduced in the paper and determined through the principle of equivalent energy. The history of contact force between the beams involved in the impact is evaluated by the Hertz-damp model. The responses of the passive beam are calculated by solving the equation of motion of a generalized single degree of freedom system.


2011 ◽  
Vol 255-260 ◽  
pp. 2421-2425
Author(s):  
Qiu Wei Wang ◽  
Qing Xuan Shi ◽  
Liu Jiu Tang

The randomness and uncertainty of seismic demand and structural capacity are considered in demand-capacity factor method (DCFM) which could give confidence level of different performance objectives. Evaluation steps of investigating seismic performance of steel reinforced concrete structures with DCFM are put forward, and factors in calculation formula are modified based on stress characteristics of SRC structures. A regular steel reinforced concrete frame structure is analyzed and the reliability level satisfying four seismic fortification targets are calculated. The evaluation results of static and dynamic nonlinear analysis are compared which indicates that the SRC frame has better seismic performance and incremental dynamic analysis could reflect more dynamic characteristics of structures than pushover method.


Sign in / Sign up

Export Citation Format

Share Document