The Technology Study of Steel Belt Feeding Machine of Crystallizer of Continuous Casting

2015 ◽  
Vol 727-728 ◽  
pp. 513-516
Author(s):  
Lin Hui Yu ◽  
Ming Gang Shen ◽  
Ji Dong Li ◽  
Yi Yong Wang ◽  
Jian Ming Su ◽  
...  

Crystallizer steel belt feeding technology make use of melt’s fusion decalescence, controlling the distribution of melt temperature field, restrain the columnar crystal’s growing to eliminate the composition segregation and internal loose of continuous casting. And it will improve the continuous casting’s quality. By discussing the effect of casting speed, the size of steel, casting section and other factors on the steel belt feeding speed, making comparison of different casting section get strip suitable feeding speed and range of strip size, combining with a steel for steel strip feeding test mold, its theoretical and practical production results the basic agreement

2011 ◽  
Vol 82 (11) ◽  
pp. 1266-1272 ◽  
Author(s):  
Jian-Xun Fu ◽  
Wen-Sing Hwang ◽  
Jing-She Li ◽  
Shu-Feng Yang ◽  
Zhang Hui

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3681
Author(s):  
Guoliang Liu ◽  
Haibiao Lu ◽  
Bin Li ◽  
Chenxi Ji ◽  
Jiangshan Zhang ◽  
...  

A mathematical model coupled with electromagnetic field has been developed to simulate the transient turbulence flow and initial solidification in a slab continuous casting mold under different electromagnetic stirring (EMS) currents and casting speeds. Through comparing the magnetic flux density, flow field with measured results, the reliability of the mathematical model is proved. The uniform index of solidified shell thickness has been introduced to judge the uniformity of the solidified shell. The results show that a horizonal recirculation flow has been generated when EMS is applied, and either accelerated or decelerated regions of flow field are formed in the liquid pool. Large EMS current and low casting speed may cause the plug flow near the mold narrow face and a suitable EMS current can benefit to the uniform growth of solidified shell. Meanwhile, an industrial test exhibits that EMS can weaken the level fluctuation and number density of inclusion. Overall, a rational EMS current range is gained, when the casting speed is 1.2 m/min, the rational EMS current is 500–600 A.


2008 ◽  
Vol 37 (2-4) ◽  
pp. 151-157 ◽  
Author(s):  
A. L. Kelly ◽  
E. C. Brown ◽  
K. Howell ◽  
P. D. Coates

2011 ◽  
Vol 291-294 ◽  
pp. 423-427
Author(s):  
Yan Juan Jin ◽  
Xiao Chao Cui ◽  
Zhu Zhang

An inner-outer coupled cooling technology of molten steel for 1240×200mm slab continuous casting, that is to set an inner cooler—U shape pipes in the mold, is put forward in order to enhance the efficiency of transmitting heat and improve inner structure of billet. The flow status and solidification status of molten steel under coupling flow field and temperature field in inner-outer coupled cooling mold are simulated by using fluid dynamics software, and compare with those in traditional mold. It is found that setting inner cooler in the mold can make molten steel flow status even, which is favorable to floating up of the inclusion, quickening the solidification of steel liquid and improving the quality of billet.


2012 ◽  
Vol 535-537 ◽  
pp. 633-638 ◽  
Author(s):  
Zheng Hai Zhu ◽  
Sheng Tao Qiu

It was analyzed by strain-induced precipitation model that Nb(C,N) precipitation in micro alloy steel slab was effected by strain rate during continuous casting process. The results are as follows: The changing of casting speed could effect the time for 5%precipitation of Nb(C,N), which was decreasing with increasing casting speed at certain temperature and strain rate. Slab strain and strain rate were too small in bending zone and leveling zone. The effect of slab strain rate on Nb(C,N) precipitation could be ignore when Nb(C,N) precipitation in continuous casting process was studied.


2014 ◽  
Vol 941-944 ◽  
pp. 1890-1894
Author(s):  
Guang Zheng Luo ◽  
Xin Liu ◽  
Ying Zhi ◽  
Xiang Hua Liu

The temperature field of continuous casting billet (CC-billet) is important to carry out the research on direct rolling of free-heating (DROF). The solidification and the heat transfer process of CC-billet from crystallizer to cutting point were studied by finite element method (FEM).The casting speed was improved in order to get reasonable temperature field during DROF.


2019 ◽  
Vol 55 (1) ◽  
pp. 39-46
Author(s):  
W. Kong ◽  
D.G. Cang

The submerged entry nozzle (SEN) clogging has been happening during continuous casting (or CC for short) for nonoriented silicon steel. To solve the problem, the paper studied a flow rate through SEN, a node attached to one of them, and the impact on the clogging. The results showed that when SEN is clogged seriously, the casting speed has to decrease below the target casting speed and that SEN clogging can be predicted by comparing the actual value and the theoretical one of a casting speed. Al2O3 and its composite inclusions caused the SEN clogging and the addition of Ca can solve SEN clogging during CC of the silicon steel both theoretically and practically. Furthermore, the impact of the addition of Ca on the magnetic properties of the steel were analyzed. The results showed that the core loss and the magnetic induction of the silicon steel decreased by using the addition of Ca, which generated more dissolved Aluminum, and the addition of Ca generated more harmful textures, which reduced the magnetic induction.


2011 ◽  
Vol 291-294 ◽  
pp. 3060-3063
Author(s):  
Hong Ming Wang ◽  
Bo Feng Yang ◽  
Bang Min Song ◽  
Ting Wang Zhang ◽  
Yong Qi Yan

A model on non-sinusoidal oscillation of continuous casting mould was established to study the pressure in flux channel. The effects of oscillation parameters on the pressure in flux channel were researched. The non-sinusoidal oscillation parameters were optimized. When the casting speed is 1.8 m·min-1, the optimized oscillation parameters are: non-sinusoidal factor (α) is 0.198, oscillation amplitude (s) is ±4mm and oscillation frequency (f) is 165min-1. When the casting speed is 2.0 m·min-1, the optimized oscillation parameters are: α is 0.186, s is ±4.5mm and f is 155min-1. These optimized oscillation parameters are proved applicable in practice.


Sign in / Sign up

Export Citation Format

Share Document