Study on Mechanical Performance of Deep Pile Cap Failure

2015 ◽  
Vol 730 ◽  
pp. 39-42
Author(s):  
Hong Lei Guo

This paper presents the test of 3 reinforced concrete pile caps and the complete procedure of failure as well as the stressed mechanism, including the description of the occurrence of cracks. The influences of reinforcement types on load-bearing capacity are also probed. A spatial truss model is put forward and can explain satisfactorily some phenomena observed in the test and the failure mechanism is investigated.

2007 ◽  
Vol 23 (2) ◽  
pp. 173-180
Author(s):  
W.-Y. Lu

AbstractAn analytical model for determining the shear strength of concrete pile caps under the failure mode of diagonal-compression originally based on the softened strut-and-tie model is proposed. The failure probabilities of reinforced concrete pile caps are investigated by Monte Carlo method. The results indicate that the proposed model can accurately predict the shear strength of the pile caps. The distribution of the failure probabilities for pile caps designed to ACI 318-02 Appendix A and the proposed design method are more uniform than that designed to the ACI 318-99. The ACI 318-99 is very conservative and cannot provide a consistent safety for pile caps design. It is suggested that the procedures in the ACI 318-02 Appendix A should be moved to the main body of ACI 318-02 and the proposed design method should be incorporated into the current reinforced concrete pile cap design methods.


Author(s):  
Rodrigo Gustavo Delalibera ◽  
Marco Aurélio Tomaz ◽  
Vitor Freitas Gonçalves ◽  
José Samuel Giongo

abstract: Reinforced concrete pile caps may be designed trough plastic models (strut and tie model) or models based on bending theory. The formulae available for verifying the stress is based on caps supported on concrete piles, with few studies about the stress distribution on caps supported on steel piles. To analyze the structural behavior of caps supported on steel piles, as well as the stress on the superior and inferior nodal zones, four two-pile caps supported on steel piles were tested. The variables were the embedment length and in one of the specimens a steel plate was welded on top of both piles. It was observed that the embedment length has substantial influence on pile cap structural behavior. It was concluded that, to verify the stress on inferior nodal zone of the cap, aside from pile area, an area of concrete confined between the flaps of the pile must be considered.


2021 ◽  
Vol 27 (10) ◽  
pp. 86-105
Author(s):  
Noor Ali Hussien ◽  
Mohammed Mosleh Salman ◽  
Husain Khalaf Jarallah

The main objective of this study is to understand the work of the pile caps made of lightweight aerated foam concrete and study the many factors affecting the ability and the capacity of the shear. The study was done by analyzing previous practical and theoretical experiences on the reinforced concrete pile caps. The previous practical results indicated that all specimens failed by shear diagonal compression or tension modes except one specimen that failed flexural-shear mode. Based on test specimens' practical results and behavior, some theoretical methods for estimating the ultimate strength of reinforced concrete pile caps have been recommended, some of which evolved into the design documents available on the subject. A theoretical and practical study of compression concluded that the shear capacity is limited by the nodal zone bearing stresses. The flexural capacity can be described by the column load that would cause the yielding of the tie (i.e., steel reinforcement). Therefore, the design of pile caps should include a check on bearing strength to be added to the traditional section force approach for pile cap design.


2013 ◽  
Vol 6 (5) ◽  
pp. 737-750
Author(s):  
R. Barros ◽  
J.S. Giongo

On Precast concrete structures the column foundation connections can occur through the socket foundation, which can be embedded, partially embedded or external, with socket walls over the pile caps. This paper presents an experimental study about two pile caps reinforced concrete with external, partially embedded and embedded socket submitted to central load, using 1:2 scaled models. In the analyzed models, the smooth interface between the socket walls and column was considered. The results are compared to a reference model that presents monolithic connections between the column and pile cap. It is observed that the ultimate load of pile cap with external sockets has the same magnitude as the reference pile cap, but the ultimate load of models with partially embedded and embedded socket present less magnitude than the reference model.


2000 ◽  
Vol 14 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Toong Khuan Chan ◽  
Chee Keong Poh

2004 ◽  
Vol 31 (1) ◽  
pp. 109-119 ◽  
Author(s):  
William Cavers ◽  
Gordon A Fenton

There are a number of design methods that have been described for the design of pile caps, but there has been no consensus on which method provides the best approach for the working designer. This paper describes a study conducted to establish the performance of several pile cap design methods, particularly with respect to the Canadian standard, CSA A23.3-94. Previous research was examined to determine the basis of the design methods and the state of current research. The design methods identified were then applied to pile caps for which test data were available. The theoretical loads obtained using the various design methods were compared with the experimental loads. The results of this study indicate that two design models of the five examined are the most suitable. This study also indicates that the provisions of the Canadian design standard are adequate. A possible refinement of the strut-and-tie model incorporating a geometric limit is also outlined.Key words: building codes, footings, pile caps, reinforced concrete, structural design.


2020 ◽  
Vol 23 (11) ◽  
pp. 2276-2291
Author(s):  
Rui Pang ◽  
Yibo Zhang ◽  
Longji Dang ◽  
Lanbo Zhang ◽  
Shuting Liang

This article proposes a new type of discrete connected precast reinforced concrete diaphragm floor system that consists of precast flat slabs and slab joint connectors. An experimental investigation of discrete connected new-type precast reinforced concrete diaphragm under a vertical distributed static load was conducted, and the effect of slab joint connectors on the load-bearing capacity was evaluated. Then, a finite element analysis of discrete connected new-type precast reinforced concrete diaphragm, precast reinforced concrete floors without slab connectors, and cast-in-situ reinforced concrete floor were performed to understand their working mechanism and determine the differences in load-bearing behavior. The results indicate that the load-bearing capacity and stiffness of discrete connected new-type precast reinforced concrete diaphragm increase considerably as the hairpin and cover plate hybrid slab joint connectors can efficiently connect adjacent precast slabs and enable them to work together under a vertical load by transmitting the shear and moment forces in the orthogonal slab laying direction. The deflection of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction is mainly caused by the opening deformation of the slab joint and the rotational deformation of the precast slabs. This flexural deformation feature can provide reference for establishing the bending stiffness analytical model of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction, which is vitally important for foundation of the vertical bearing capacity and deformation calculation method. The deflection and crack distribution patterns infer that the discrete connected new-type precast reinforced concrete diaphragm processes the deformation characteristic of two-way slab floor, which can provide a basis for the theoretical analysis of discrete connected new-type precast reinforced concrete diaphragm.


2019 ◽  
Vol 97 ◽  
pp. 04059 ◽  
Author(s):  
Alexey Dem’yanov ◽  
Vladymir Kolchunov ◽  
Igor Iakovenko ◽  
Anastasiya Kozarez

It is presented the formulation and solution of the load bearing capacity of statically indeterminable systems “reinforced concrete beam – deformable base” by spatial cross-sections under force and deformation effects. The solution of problem is currently practically absent in general form. It has been established the relationship between stresses and strains of compressed concrete and tensile reinforcement in the form of diagrams. The properties of the base model connections are described based on a variable rigidity coefficient. It is constructed a system of n equations in the form of the initial parameters method with using the modules of the force (strain) action vector. The equations of state are the dependences that establish the relationship between displacements which are acting on the beam with load. Constants of integration are determined by recurrent formulas. It makes possible to obtain the method of initial parameters in the expanded form and, consequently, the method of displacements for calculating statically indefinable systems. The values of the effort obtained could be used to determine the curvature and rigidity of the sections in this way. It is necessary not to set the vector modulusP, the deformation is set in any section (the module is considered as an unknown) during the problem is solving. This allows us to obtain an unambiguous solution even in the case when the dependence M–χ has a downward section, i.e one value of moment can correspond to two values of curvature.


Sign in / Sign up

Export Citation Format

Share Document