An Improved LEACH Protocol in Wireless Sensor Networks

2015 ◽  
Vol 743 ◽  
pp. 748-752 ◽  
Author(s):  
L.F. Liu ◽  
P. Guo ◽  
J. Zhao ◽  
N. Li

Wireless sensor network routing protocol is to prolong the survival time of wireless sensor networks by using the sensor nodes energy efficiently. Traditional LEACH protocol is random in the election of the cluster head, if a less energy node is first elected as a cluster head node, then the node might die soon, it will greatly reducing the lifetime of the network. In order to collect data more efficiently and prolong the network life cycle,we need better clustering protocol. Aim at the traditional LEACH protocol have some weakness,this paper improve the protocol based on traditional LEACH protocol, two influence factors which the residual energy and the number of elected cluster head of the nodes had been introduced to make the clustering more ideal. Simulation results show that compared to the traditional Leach algorithm ,the improved LEACH protocol can prolong the network life cycle more effective and reduce the energy consumption of the whole network.

2015 ◽  
Vol 785 ◽  
pp. 744-750
Author(s):  
Lei Gao ◽  
Qun Chen

In order to solve the energy limited problem of sensor nodes in the wireless sensor networks (WSN), a fast clustering algorithm based on energy efficiency for wire1ess sensor networks is presented in this paper. In the system initialization phase, the deployment region is divided into several clusters rapidly. The energy consumption ratio and degree of the node are chosen as the selection criterion for the cluster head. Re-election of the cluster head node at this time became a local trigger behavior. Because of the range of the re-election is within the cluster, which greatly reduces the complexity and computational load to re-elect the cluster head node. Theoretical analysis indicates that the timing complexity of the clustering algorithm is O(1), which shows that the algorithm overhead is small and has nothing to do with the network size n. Simulation results show that clustering algorithm based on energy efficiency can provide better load balancing of cluster heads and less protocol overhead. Clustering algorithm based on energy efficiency can reduce energy consumption and prolong the network lifetime compared with LEACH protocol.


Many researches have been proposed for efficiency of data transmission from sensor nodes to sink node for energy efficiency in wireless sensor networks. Among them, cluster-based methods have been preferred In this study, we used the angle formed with the sink node and the distance of the cluster members to calculate the probability of cluster head. Each sensor node sends measurement values to header candidates, and the header candidate node measures the probability value of the header with the value received from its candidate member nodes. To construct the cluster members, the data transfer direction is considered. We consider angle, distance, and direction as cluster header possibility value. Experimental results show that data transmission is proceeding in the direction of going to the sink node. We calculated and displayed the header possibility value of the neighbor nodes of the sensor node and confirmed the candidates of the cluster header for data transfer as the value. In this study, residual energy amount of each sensor node is not considered. In the next study, we calculate the value considering the residual energy amount of the node when measuring the header possibility value of the cluster.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenjiang Zhang ◽  
Yanan Wang ◽  
Fuxing Song ◽  
Wenyu Zhang

In wireless sensor networks (WSNs), energy-constrained sensor nodes are always deployed in hazardous and inaccessible environments, making energy management a key problem for network design. The mechanism of RNTA (redundant node transmission agents) lacks an updating mechanism for the redundant nodes, causing an unbalanced energy distribution among sensor nodes. This paper presents an energy-balanced mechanism for hierarchical routing (EBM-HR), in which the residual energy of redundant nodes is quantified and made hierarchic, so that the cluster head can dynamically select the redundant node with the highest residual energy grade as a relay to complete the information transmission to the sink node and achieve an intracluster energy balance. In addition, the network is divided into several layers according to the distances between cluster heads and the sink node. Based on the energy consumption of the cluster heads, the sink node will decide to recluster only in a certain layer so as to achieve an intercluster energy balance. Our approach is evaluated by a simulation comparing the LEACH algorithm to the HEED algorithm. The results demonstrate that the BEM-HR mechanism can significantly boost the performance of a network in terms of network lifetime, data transmission quality, and energy balance.


2019 ◽  
Vol 16 (2) ◽  
pp. 496-502
Author(s):  
N. Vadivelan ◽  
A. Ramamurthy ◽  
P. Padmaja

Wireless sensor networks were organized with the collections of sensor nodes for the purpose of monitoring physical phenomenon such as temperature, humidity and seismic events, etc., in the real world environments where the manual human access is not possible. The major tasks of this type of networks are to route the information to sink systems in the sensor network from sensor nodes. Sensors are deployed in a large geographical area where human cannot enter such as volcanic eruption or under the deep sea. Hence sensors are not rechargeable and limited with battery backup; it is very complicated to provide the continuous service of sending information to sink systems from sensor nodes. To overcome the drawback of limited battery power, this paper proposes the concept of minimizing energy consumption with the help of neural networks. The modified form of HRP protocol called energy efficient HRP protocol has been implemented in this paper. Based on this concept, the workload of cluster head is shared by the cluster isolation node in order to increase the lifetime of the cluster head node. Also cluster monitoring node is introduced to reduce the re-clustering process. The implementation procedure, algorithm, results and conclusions were proved that the proposed concept is better than the existing protocols.


2012 ◽  
Vol 6-7 ◽  
pp. 831-835
Author(s):  
Chang Lin Ma ◽  
Yuan Ruan

In order to improve the lifetime and throughput of wireless sensor networks under the limited power, an improved clustering algorithm is proposed in this paper on the basis of LEACH protocol. The energy factor is considered in this algorithm. The residual energy of all sensor nodes is referred to select cluster-heads of wireless sensor networks. The new clustering algorithm effectively improves the energy efficiency, throughput and lifetime of wireless sensor networks. The results are proved by simulations.


2014 ◽  
Vol 989-994 ◽  
pp. 4273-4276
Author(s):  
Shi Ping Fan ◽  
Xiao Di Zhang ◽  
Hai Li Wang

In order to prolong the lifetime of wireless sensor networks, improvement of cluster-head selection mechanism based on LEACH protocol is proposed. To make the energy distribution more uniform, we consider the relationship of the density of nodes, residual energy of nodes and distance between nodes and Sink node. It eliminates the defect of energy consumption imbalance in the network caused by random position of cluster-heads and the problem of premature death of nodes caused by low energy nodes becoming cluster-heads. Simulation results show that compared with LEACH algorithm, the improved algorithm extend the network lifetime.


2016 ◽  
Vol 12 (10) ◽  
pp. 97
Author(s):  
Jun Ma

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; -ms-layout-grid-mode: line; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">In this paper the dynamic point target tracking is studied, and a message driven target tracking algorithm based on non-ranging is proposed by combining the actual sensor node characteristics. By tissue tracking around the target sensor nodes collaborate to establish a tracking cluster and the cluster head node for data fusion to accurately locate the target and thus formed a kind of efficient and precise distributed dynamic tracking cluster algorithm of DTC. The tracking cluster can follow the target as a shadow, and it can realize the management of the cluster itself and constantly report to the sink node to the target location. The protocol is especially suitable for the use of large scale wireless sensor networks with low node cost.</span>


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jin Yong ◽  
Zhou Lin ◽  
Wei Qian ◽  
Bai Ke ◽  
Wang Chen ◽  
...  

In wireless sensor networks (WSNs), due to the limited energy of sensor nodes, how to design efficient hierarchical routing algorithms to balance network resources and extend network life is an important problem to be solved. Aiming at the problems such as random selection of cluster head, redundancy of working node, and construction of cluster head transmission path, which affect network energy consumption, this paper proposes a multihop routing algorithm based on path tree (MHRA-PT) to optimize the network energy. Firstly, some nodes are those close to the base station and have large remaining energy which are selected to construct a cluster head set. Then, after clustering, each cluster is divided into different regions, and in each region, nodes with residual energy greater than the average residual energy of the cluster are selected as a working node. Finally, the cluster heads are sorted according to their distance from base station, and the next hop node is selected for each cluster head in turn until a path tree rooted at base station is formed completely, leading to data transmission from working node to base station. Simulation results show that the proposed algorithm can effectively reduce network energy consumption, balance network resources, and prolong network life cycle.


Author(s):  
Asgarali Bouyer ◽  
Abdolreza Hatamlou

Wireless Sensor Networks (WSNs) consist of many sensor nodes, which are used for capturing the essential data from the environment and sending it to the Base Station (BS). Most of the research has been focused on energy challenges in WSN. There are many notable studies on minimization of energy consumption during the process of sensing the important data from the environment where nodes are deployed. Clustering-based routing protocols are an energy-efficient protocols that improve the lifetime of a wireless sensor network. The objective of the clustering is to decrease the total transmission power by aggregating into a single path for prolonging the network lifetime. However, the problem of unbalanced energy consumption exists in some cluster nodes in the WSNs. In this paper, a hybrid algorithm is proposed for clustering and cluster head (CH) election. The proposed routing protocol hybridized Penalized Fuzzy C-Means (PFCM) and Self Organization Map (SOM) algorithms with LEACH protocol for the optimum numbers of the CHs and the location of them. Simulation results reveal that the proposed algorithm outperforms other existing protocols in terms of network life, number of dead sensor nodes, energy consumption of the network and convergence rate of the algorithm in comparison to the LEACH algorithm.


2021 ◽  
Vol 10 (3) ◽  
pp. 50
Author(s):  
Zahid Yousif ◽  
Intesab Hussain ◽  
Soufiene Djahel ◽  
Yassine Hadjadj-Aoul

Wireless Sensor Networks (WSNs) is a major sensing technology that has revolutionized the way information is collected, processed, and used in many smart cities’ applications that rely on sensing technologies for event detection and monitoring. Despite the multiple benefits that such technology offers, the quick depletion of sensors’ battery power represents a major concern, mainly due to the extensive computational tasks and communication operations performed by individual sensors. Indeed, the cost of replacing batteries can be prohibitively expensive, especially when sensors are deployed in areas where access is difficult, in urbanized cities. To extend sensors’ lifetime, this paper proposes a new variant of LEACH protocol named LEACH enhanced with probabilistic cluster head selection (LEACH-PRO). LEACH-PRO introduces several measures to extend WSNs nodes’ lifetime such as cluster head node selection using a probabilistic function based on maximum residual energy and minimum distance to the sink. The obtained simulation results have proven the supremacy of LEACH-PRO over LEACH and direct transmission protocol in terms of the achieved network lifetime and the generated traffic overhead. Most importantly, LEACH-PRO will significantly extend the sensors’ lifetime, which would make this type of deployment more viable in smart city scenarios.


Sign in / Sign up

Export Citation Format

Share Document