scholarly journals Clustering Algorithm of Wireless Sensor Networks Based on Residual Energy

2012 ◽  
Vol 6-7 ◽  
pp. 831-835
Author(s):  
Chang Lin Ma ◽  
Yuan Ruan

In order to improve the lifetime and throughput of wireless sensor networks under the limited power, an improved clustering algorithm is proposed in this paper on the basis of LEACH protocol. The energy factor is considered in this algorithm. The residual energy of all sensor nodes is referred to select cluster-heads of wireless sensor networks. The new clustering algorithm effectively improves the energy efficiency, throughput and lifetime of wireless sensor networks. The results are proved by simulations.

2015 ◽  
Vol 785 ◽  
pp. 744-750
Author(s):  
Lei Gao ◽  
Qun Chen

In order to solve the energy limited problem of sensor nodes in the wireless sensor networks (WSN), a fast clustering algorithm based on energy efficiency for wire1ess sensor networks is presented in this paper. In the system initialization phase, the deployment region is divided into several clusters rapidly. The energy consumption ratio and degree of the node are chosen as the selection criterion for the cluster head. Re-election of the cluster head node at this time became a local trigger behavior. Because of the range of the re-election is within the cluster, which greatly reduces the complexity and computational load to re-elect the cluster head node. Theoretical analysis indicates that the timing complexity of the clustering algorithm is O(1), which shows that the algorithm overhead is small and has nothing to do with the network size n. Simulation results show that clustering algorithm based on energy efficiency can provide better load balancing of cluster heads and less protocol overhead. Clustering algorithm based on energy efficiency can reduce energy consumption and prolong the network lifetime compared with LEACH protocol.


2021 ◽  
Author(s):  
Ikram DAANOUNE ◽  
Abdennaceur BAGHDAD

Abstract Wireless Sensor Networks (WSNs) are extensively used in diferent areas and especially in severe and harsh environments such as battlegrounds, volcanic areas, healthcare, and so on. The major constraint in WSNs is the limited power supply, which impacts the lifeycle of the entire network. Clustering is a performing method used in WSN to optimize power consumption and extend the lifetime of WSNs. LEACH is considered as the first classical clustering protocol used in WSN to optimize energy consumption. Many protocols had been developed to enhance the conventional LEACH protocol. BRE-LEACH (Balanced Residual Energy LEACH) is one of them. It serves to enhance the performance of the LEACH protocol. In this paper, we suggest a new improved BRE-LEACH protocol called IBRE-LEACH (Improved Balanced Residual Energy LEACH), which ameliorates the performance of the BRE-LEACH approach. The IBRE-LEACH combines clustering and multi-hop techniques. It elects CHs according to the residual energy, limits the maximum number of nodes in each cluster to balance energy consumption. Thus, IBRE-LEACH gives the Abandoned Nodes (ANs) the chance to send their data to the BS. Furthermore, it routes the gathered data using the CHs, ANs, and a root node, which is a node with maximum residual energy and minimum distance to the BS. The simulation results in MATLAB exhibit that the IBRE-LEACH increases the throughput, optimizes energy consumption, extends the network lifetime, and ameliorates the stability up to 81.99%, 94.33%, and up to 91.47% compared with BRE-LEACH, LEACH-C, and LEACH, respectively.


2011 ◽  
Vol 474-476 ◽  
pp. 1221-1227
Author(s):  
Ying Liao ◽  
Wei Xu Hao

Wireless sensor networks (WSNs) detect and monitor the outside physical state by the sensor nodes organizing automatically. Utilizing clustering algorithm to form hierarchical network topology is the common method which implements managing network and aggregating data in WSNs. Different from the previous clustering algorithms, this article proposes a clustering algorithm for WSNs based on distance and distribution to generate clusters considering residual energy of nods in WSNs with inhomogeneous distribution. The simulation result indicates that the algorithm can establish more balanceable clustering structure effectively and enhance the network life cycle obviously.<b></b>


2015 ◽  
Vol 743 ◽  
pp. 748-752 ◽  
Author(s):  
L.F. Liu ◽  
P. Guo ◽  
J. Zhao ◽  
N. Li

Wireless sensor network routing protocol is to prolong the survival time of wireless sensor networks by using the sensor nodes energy efficiently. Traditional LEACH protocol is random in the election of the cluster head, if a less energy node is first elected as a cluster head node, then the node might die soon, it will greatly reducing the lifetime of the network. In order to collect data more efficiently and prolong the network life cycle,we need better clustering protocol. Aim at the traditional LEACH protocol have some weakness,this paper improve the protocol based on traditional LEACH protocol, two influence factors which the residual energy and the number of elected cluster head of the nodes had been introduced to make the clustering more ideal. Simulation results show that compared to the traditional Leach algorithm ,the improved LEACH protocol can prolong the network life cycle more effective and reduce the energy consumption of the whole network.


2021 ◽  
Author(s):  
Meriem MEDDAH ◽  
Rim HADDAD ◽  
Tahar EZZEDDINE

Abstract Mobile Data Collector device (MDC) is adopted to reduce the energy consumption in Wireless Sensor Networks. This device travels the network in order to gather the collected data from sensor nodes. This paper presents a new Tree Clustering algorithm with Mobile Data Collector in Wireless Sensor Networks, which establishes the shortest travelling path passing throw a subset of Cluster Heads (CH). To select CHs, we adopt a competitive scheme, and the best sensor nodes are elected according to the number of packets forwarded between sensor nodes, the number of hops to the tree’s root, the residual energy, and the distance between the node and the closest CH. In simulation results, we adopt the balanced and unbalanced topologies and prove the efficiently of our proposed algorithm considering the network lifetime, the fairness index and the energy consumption in comparison with the existing mobile data collection algorithms.


Author(s):  
Karuna Babber

Background: The advent of wireless sensor networks makes it possible to track the events even in the remotest areas that too without human intervention. But severe resource constraints, generally energy of sensor nodes push researchers worldwide to develop energy efficient protocols in order to accomplish the application objectives of these networks. Objective: However, till date there is no energy efficient routing protocol which provides uniformity with maximum resource utilization for WSNs. Methods: In this paper, a Uniform Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (UCAEE) has been proposed. UCAEE is a base station controlled algorithm where entire sensing area is partitioned into uniform clusters. The motive of the algorithm is to split the sensing area into uniform clusters and to select cluster heads and gate-way nodes within each cluster so that the network energy can be balanced in a best possible way. Conclusion: UCAEE achieves minimum energy consumption during data transmission and reception. Results: Simulation results indicate that proposed UCAEE algorithm conserves more energy than its contemporary clustering algorithms like LEACH, PEGASIS and SECA and promises better network lifetime of wireless sensor networks.


Current years Wireless Sensor networks is a leading area in research due to its number of applications in massive areas .The major concern for Wireless sensor networks is an issue of power of batteries for sensor nodes , several algorithms were transcribed to solve this problem but in so many cases only energy efficiency is considered , coverage problem with energy efficiency is not addressed in most of the cases. To give a better solution for energy efficiency and coverage in this paper modified LEACH protocol is proposed with genetic algorithm, which gives comparatively better results than EBRP protocol


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


The fundamental issue is framing the sensor nodes and steering the information from sender node to receiver node in wireless sensor networks (WSN). To resolve this major difficulty, clustering algorithm is one of the accessible methods employed in wireless sensor networks. Still, clustering concept also faces some hurdles while transmitting the data from source to destination node. The sensor node is used to sense the data and the source node helps to convey the information and the intended recipient receives the sensed information. The clustering proposal will choose the cluster head depending on the residual energy and the sensor utility to its cluster members. The cluster heads will have equal cluster number of nodes. The complexity is generated in computing the shortest path and this can be optimized by Dijkstra’s algorithm. The optimization is executed by Dijkstra’s shortest path algorithm that eliminates the delay in packet delivery, energy consumption, lifetime of the packet and hop count while handling the difficulties. The shortest path calculation will improve the quality of service (QoS). QoS is the crucial problem due to loss of energy and resource computation as well as the privacy in wireless sensor networks. The security can be improvised in this projected work. The preventive metrics are discussed to upgrade the QoS facility by civilizing the privacy parameter called as Safe and Efficient Query Processing (SAFEQ) and integrating the extended watchdog algorithm in wireless sensor networks.


2014 ◽  
Vol 573 ◽  
pp. 407-411
Author(s):  
Chelliah Pandeeswaran ◽  
Natrajan Papa ◽  
Sundar G. Jayesh

MAC protocol design in Wireless sensor networks becomes vibrant research field for the past several years. In this paper an EE-Hybrid MAC protocol (Energy efficient hybrid Medium Access Control) has been proposed, which is energy efficient and low latency MAC protocol, which uses interrupt method to assign priority for certain wireless sensor nodes assumed to be present in critical loops of industrial process control domain. EE-Hybrid MAC overcomes some of the limitations in the existing approaches. Industrial wireless sensor network require a suitable MAC protocol which offers energy efficiency and capable of handling emergency situations in industrial automation domain. Time critical and mission critical applications demands not only energy efficiency but strict timeliness and reliability. Harsh environmental condition and dynamic network topologies may cause industrial sensor to malfunction, so the developed protocol must adapt to changing topology and harsh environment. Most of the existing MAC protocols have number of limitations for industrial application domain In industrial automation scenario, certain sensor loops are found to be time critical, where data’s have to be transferred without any further delay. The proposed EE-Hybrid MAC protocol is simulated in NS2 environment, from the result it is observed that proposed protocol provides better performance compared to the conventional MAC protocols.


Sign in / Sign up

Export Citation Format

Share Document