Study on Wheel-Rail Coupled Vibration of Metro with Co-Simulation of Finite Element Analysis and Multi-Body Dynamics Simulation

2015 ◽  
Vol 752-753 ◽  
pp. 636-641
Author(s):  
Wen Jing Sun ◽  
Dao Gong ◽  
Jin Song Zhou

Based on the multi-body dynamics theory and modal-reduction analysis, finite element method and multi-body dynamics were combined to establish the flexible track model. The rigid-flexible coupled dynamics model can reflect the features of coupled vibration accurately. When the flexibility of the rail, damping and stiffness of support layers under the rail are taken into consideration, the whole track structure acted as a buffer while wheel and rail is interacting with each other. Compared with rigid track model, the wheel-rail vibration is less in the flexible track model. The proposed method in this paper is simple and effective, which makes the calculation of vehicle-track dynamic response more convenient and quick.

Author(s):  
Fengxia Wang

This work concerns the implementation of nonlinear modal reduction to flexible multi-body dynamics. Linear elastic theory will lead to instability issues with rotating beamlike structures, due to the neglecting of the membrane-bending coupling on the beam cross-section. During the past decade, considerable efforts have been focused on the derivation of geometric nonlinear formulation based on nodal coordinates. In this work, in order to improve the convergence characteristic and also to reduce the computation time in flexible multi-body dynamics, which is extremely important for complicated large systems, a standard modal reduction procedure based on matrix operation is developed with essential geometric stiffening nonlinearities retained in the equation of motion. The example used in this work is a rotating Euler-Bernoulli beam, two nonlinear reduced models were established based on modal coordinates, the first reduced model created from theoretical bending and axial mode shapes by Galerkin method; the second reduced model is derived by the standard matrix operator from a full finite element model. Transient simulation results of lower degrees of freedom from above two reduced models are compared with those obtained from full nonlinear finite element model.


2012 ◽  
Vol 253-255 ◽  
pp. 2107-2112
Author(s):  
Jian Min Li ◽  
Chuan Yang Sun ◽  
Zhang Cheng Yang ◽  
Zu Xi Yi

For the problem that car sub-frame constraint connection complex and effective load more difficult to determine, using finite element and multi-body dynamics ADAMS co-simulation method, Analyzed on a Volkswagen vehicle sub-frame, obtained the accurate load on the sub-frame which are used by engine suspension. The finite element analysis results show that engine load is the greatest impact on the sub-frame stress field, which can be reduced by increasing the area of engine and the sub-frame contacting, thereby prolong the life of sub-frame.


2015 ◽  
Vol 743 ◽  
pp. 99-106 ◽  
Author(s):  
Kyung Min Kang ◽  
Peng Mou ◽  
D. Xiang ◽  
Gang Shen

Misalignment on sun gear in planetary gear is easily occurred and it usually causes serious problem of work efficiency and lifetime with the change of planet load sharing. For study on the influence of sun gear misalignment on load sharing, multibody dynamics simulation is employed in this paper. First of all, 3D geometry model of planetary gear is built by Solidworks. Based on 3D model, multi-body dynamics model of planetary gear is built by MSC.ADAMS and calculate meshing forces between sun gear and planet gears with each type of sun gear misalignment which are angular, radial and axial type. Based on this meshing force result, load sharing factor is calculated and the results of influence of each misalignment type to load sharing factor is obtained. Finally, gear lifetime is estimated by AGMA gear fatigue strength estimation method with load sharing factor. According to the results, radial misalignment is the most influence to load sharing factor and gear lifetime.


2012 ◽  
Vol 538-541 ◽  
pp. 2631-2635
Author(s):  
Xin Tan ◽  
Yao Li ◽  
Jun Jie Yang

This paper introduces a complex multi-body dynamics model which is established to simulate the dynamic behaviors of a multi-stage hybrid planetary gearing based on the finite element method and the software ADAMS. The finite element method is used to introduce deformable ring-gears and sun-gears by using 3D brick units. A whole multi-body dynamics model is established in the software ADAMS. Mesh stiffness variation excitation and gear tooth contact loss are intrinsically considered. A rich spectrum of dynamic phenomena is shown in the multi-stage hybrid planetary gearing. The results show that the static strength of main parts of the gearing is strong enough and the main vibration and noises are excited by the dynamic mesh forces acting on the tooth of planet-gears and ring-gears.


2012 ◽  
Vol 630 ◽  
pp. 291-296
Author(s):  
Yu Wang ◽  
En Chen ◽  
Jun Qing Gao ◽  
Yun Feng Gong

In the past finite element analysis (FEA) and multi-body system simulation (MBS) were two isolated methods in the field of mechanical system simulation. Both of them had their specific fields of application. In recent years, it is urgent to combine these two methods as the flexible multi-body system grows up. This paper mainly focuses on modeling of the spindle system of hammer crusher, including geometric model, finite element model and multi-body dynamics (MBD) model. For multi-body dynamics modeling, the contact force between hammer and scrap steel was discussed, which is important to obtain the impact force. This paper also proposed how to combine FEA and MBS to analyze the dynamic performance of the spindle system by using different software products of MSC.Software.


2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096833
Author(s):  
Abdelrahman I A Eisa ◽  
Li Shusen ◽  
Wasim M K Helal

Due to rapid development in the industry, operating speeds and eccentricity produced undesirable vibrations which may lead to damage in bearings, seals, and lubrication systems. In the proposed paper, a novel analytical method was presented using an integrated multi-body dynamics and finite element analysis to simulate the lateral and torsional vibration. This method was applied to a proposed model of single rotor-system. In order to study the lateral and torsional vibration of the system profoundly, three markers were placed on the locations of the left and right bearings and the mass center of the shaft. The effects of bearing force caused by lateral and torsional vibrations were also analyzed. The results showed that the lateral vibration has a great effect on the dynamic of single rotor-system when lowering motor speed. It was found that, as motor speed increased, the motion of the system becomes more stable with steady fluctuates of the displacement response. The calculated natural frequency of SRS is compared with theoretical results to verify the transient solver. This novel method is practical in analyzing the lateral and torsional vibration of the SRS under various speeds and eccentricities.


2014 ◽  
Vol 494-495 ◽  
pp. 55-58
Author(s):  
Jie Guo

For the poor ride comfort performance of the articulated dump truck, the dynamic model of ADT was built and its dynamic characteristics were also studied through finite element and multi-body system dynamic theory. According to the modal neutral file generated by finite element software with the flexible processing, the flexible coupling virtual prototyping model was set up for the multi-body dynamics simulation in ADAMS to obtain and analyze the data about the ADT ride comfort. This paper provided references for the design, redesign and optimization of the ADT.


Sign in / Sign up

Export Citation Format

Share Document