Effect and Optimization of Performance of Ceramic Coated Internal Combustion Engine

2015 ◽  
Vol 766-767 ◽  
pp. 546-550
Author(s):  
E.V.V. Ramanamurthy ◽  
Nishant Gaurav ◽  
Abhiyan Paudel ◽  
Jasleen

Ceramic coating on the internal combustion engine has appeared as one of the great means that increase performance and efficiency of an engine. This paper presents a novel approach for the optimization and study of the effect of performance of ceramic coated internal combustion engine. In this paper, different parameters like engine load and engine speed are optimized with the consideration of various responses such as engine power output, volumetric efficiency, heat transfer rate to coolant and carbon monoxide (CO) emission. Experiments are carried out by varying the parameters of load and engine speed of ceramic coated internal combustion engine. Orthogonal array is taken to conduct the experiments with the load of 40 Nm, 120 Nm, 200 Nm and speed of 1200, 2000 and 2800 in rev/min. This method shows a good convergence with the experimental and optimum process parameters where maximum volumetric efficiency, minimum heat transfer rate and minimum CO emission are obtained by using the grey relational analysis method.

Radiators used in the automotive application are a class of heat exchangers whose main purpose is to cool the coolant coming from the internal combustion engines. These coolants flow through tubes covered with fins that facilitate a faster way of heat transfer to the surrounding more efficiently. With the increase in efficiency of the engine cooling system it directly helps in the longevity of the engine in other words, the life of the internal combustion engine increases multifold times. Upon investigating we found different shapes that can be used to optimize the radiators efficiency. There are several other ways to improve the efficiency of a radiator. And these can be achieved by improving the surface area of the radiator, improving airflow through it, improving coolant property which flows through these tubes covered with fin all around and at last using alternate materials that prove to be more efficient than the present ones that are being used. The demand of the current times of climate change and energy crisis have paved way for improved heat transfer rates and designing radiators in smaller dimensions and sizes at the same time being more efficient than the previous generation of radiators. With the above conditions in mind, it has been found out that with a simple modification of changing the existing rectangular-shaped radiators into spiral-shaped ones thereby improving efficiency to improved levels, which finds its use in the current generation of vehicles which are benefitting from the improved rate of heat transfer taking place. The spiral radiator of copper tube used here is wound in two coils connected centrally. Spiral tubes of the radiator have circumferential fins. In this type of configuration, heat transfer rate will increase because of having a circumferential fin across the length of the spiral tube through which water flows. These design considerations have been done keeping in mind the major aims to achieve for this type of design and they are improving heat transfer rate and achieving compactness of shape of radiator. We also did Computational Fluid Dynamics or CFD Analysis to test the material properties for the application of heat transfer and how it fares against old materials.


2022 ◽  
pp. 1-27
Author(s):  
Rui Quan ◽  
Yousheng Yue ◽  
Zikang Huang ◽  
Yufang Chang ◽  
Yadong Deng

Abstract The maximum generated power of automobile exhaust thermoelectric generator (AETEG) can be enhanced by applying inserted fins to its heat exchanger, for the temperature difference of thermoelectric modules (TEMs) is increased. However, the heat exchanger will result in undesired backpressure, which may deteriorate the performance of the internal combustion engine (ICE). To evaluate the backpressure on the performance of both the ICE and the AETEG, the model of ICE integrated with AETEG was established with the GT-power software and validated with the AETEG test bench. The heat exchangers with chaos shape and fishbone shape were proposed, their pressure drop with different engine speeds was studied, and their effects on the performance of both the AETEG and the ICE were analyzed. The results showed that compared with the fishbone-shaped structure, the pressure drop of chaos-shaped heat exchanger is larger at the same engine speed, which contributes to the increased maximum power and hot side temperature of the AETEG. Moreover, compared with the ICE without heat exchanger, the brake torque, brake power, volumetric efficiency and pumping mean effective pressure of the ICE assembled with chaos-shape and fishbone-shape heat exchanger reduce, and the corresponding brake specific fuel consumption, CO emission and CO2 emission increase because of the raised backpressure caused by the heat exchanger.


Author(s):  
P. Hashchuk ◽  
S. Nikipchuk

Deterministic and, in a certain sense, "linear" interpretation of the world often leads to the recognition of the fact that the more accurate model we need, the more complex it must be (as in case of a formalized reproduction of the real system, or the implementation of the desired system properties in the process of formal synthesis of something new). Instead, following the principle of synergy leads to the conviction that there is always a certain model of optimal complexity e.g. in the synthesis of the new system, and in the analysis of real system peculiarities. However, the model of reality could be a part of this reality that is included to the carefully structured formal description. Since we cannot penetrate into the working space of the serial engine while testing, we should use a test engine of a special construction when the working space corresponds to the laws of similarity and this engine will serve as a model of the working space of the serial engine.     The study illustrates the effectiveness of hard-soft technology while investigating the peculiarities of heat generation and heat consumption in the internal combustion engine, which will combine mathematic and algorithmic means of modelling as well as the means of real simulation. The necessity of hard-soft technology introduction arises from the excessive complexity of thermal phenomena occurring in the internal combustion engine (ICE), and the inability to fully subordinate these phenomena to existing analytical models. The combination of original and analytical properties, reality and virtual reality while modelling the processes in internal combustion engines allows us to substantially improve the quality of information in the process of design and engine construction. Taking this into consideration, there are some natural grounds to apply principles of heuristic self-organization, self-learning, means of the neural networks, etc. in the design implementation. The study demonstrates the example of modelling the real working space of ICE with the forced start that serves as a supplement to the mathematical algorithmic two-zone model of heat generation / heat consumption / heat extraction. The basic information that can be obtained by means of hard-soft technology in the framework of, for example, the two-zone model of the work process in the gasoline engine, is the variability with the change in the angle of rotation of the crankshaft of the engine: absolute pressure (indicative diagram); absolute temperature; heat transmitted inside the cylinder between zones; coefficient of excess air; coefficient of heat transfer; intensity of heat extraction in the process of combustion of fuel; intensity of heat transfer through the walls of the cylinde


Author(s):  
David R. Buttsworth ◽  
Abdalla Agrira ◽  
Ray Malpress ◽  
Talal Yusaf

Simulation of internal combustion engine heat transfer using low-dimensional thermodynamic modelling often relies on quasi-steady heat transfer correlations. However, unsteady thermal boundary layer modelling could make a useful contribution because of the inherent unsteadiness of the internal combustion engine environment. Previous formulations of the unsteady energy equations for internal combustion engine thermal boundary layer modelling appear to imply that it is necessary to adopt the restrictive assumption that isentropic processes occur in the gas external to the thermal boundary layer. Such restrictions are not required and we have investigated if unsteady modelling can improve the simulation of crank-resolved heat transfer. A modest degree of success is reported for the present modelling which relies on a constant effective turbulent thermal conductivity. Improvement in the unsteady thermal boundary layer simulations is expected in future when the temporal and spatial variation in effective turbulent conductivity is correctly modelled.


Sign in / Sign up

Export Citation Format

Share Document