Optimization of Pump-Throttling Substation of Heating Networks

2015 ◽  
Vol 792 ◽  
pp. 375-378 ◽  
Author(s):  
Dmitriy Alexandrovich Makarov ◽  
Vladimir Petrovich Chernenkov ◽  
Ilia Dmitrievich Likhachev

This article conceptually reviews the technological process of heat network intervening substation’s operation process. It presents the substation’s operation process optimization method to increase the system energy efficiency at large. Experimental data, that prove the effectiveness and expediency of suggested heat network operation methods, are presented in a graphic form.

2021 ◽  
pp. 116597
Author(s):  
Zhipeng Xiong ◽  
Kai Guo ◽  
Hongwei Cai ◽  
Hui Liu ◽  
Wenyu Xiang ◽  
...  

2021 ◽  
Author(s):  
Xinliang Yang ◽  
Hanju Ding ◽  
Yanda Lv ◽  
Yuanyuan Lu ◽  
Yuming Zhao ◽  
...  

Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.


2013 ◽  
Vol 700 ◽  
pp. 164-169
Author(s):  
Kai Song ◽  
Chao Wang ◽  
Tao Chen ◽  
Ze Zhou

This paper aims at cover body dent resistance optimization problems, developed a whole process method using the finite element simulation method and the corresponding engineering experience to solve the dent resistance problem. Use of Tcl/Tk language to develop the script for fast simulation model consider material nonlinearity and contact nonlinearity, Use Abaqus software to calculate the results, and then customized to optimize use of simplified script parameters on changes in the working conditions of the structure will be optimized. The results show that this set of process optimization method to solve the variable conditions dent resistance is quickly, efficiently and accurately.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3811
Author(s):  
Iosif Sorin Fazakas-Anca ◽  
Arina Modrea ◽  
Sorin Vlase

This paper proposes a new method for calculating the monomer reactivity ratios for binary copolymerization based on the terminal model. The original optimization method involves a numerical integration algorithm and an optimization algorithm based on k-nearest neighbour non-parametric regression. The calculation method has been tested on simulated and experimental data sets, at low (<10%), medium (10–35%) and high conversions (>40%), yielding reactivity ratios in a good agreement with the usual methods such as intersection, Fineman–Ross, reverse Fineman–Ross, Kelen–Tüdös, extended Kelen–Tüdös and the error in variable method. The experimental data sets used in this comparative analysis are copolymerization of 2-(N-phthalimido) ethyl acrylate with 1-vinyl-2-pyrolidone for low conversion, copolymerization of isoprene with glycidyl methacrylate for medium conversion and copolymerization of N-isopropylacrylamide with N,N-dimethylacrylamide for high conversion. Also, the possibility to estimate experimental errors from a single experimental data set formed by n experimental data is shown.


2019 ◽  
Vol 1 (1) ◽  
pp. 412-418
Author(s):  
Aleksandra Wrzalik ◽  
Matevž Obrecht

AbstractIn recent years heating in Poland has been transformed as a result of the priorities of the country's energy policy implemented within the European Union. The increase in energy security, the development of renewable energy sources and the fulfilment of legal and environmental requirements are very important. Exploitation of district heating systems should ensure reliable and safe heat supplies for industrial and municipal customers with high energy efficiency and reduction of environmental impact. The article discusses the conditions and directions of centralized heating systems development as well as technical and economic issues, which are important for the security of heat supply. The Author describes selected technological innovations used in the technical infrastructure for heat transfer and modern IT systems which are improving the management of heating systems. The article includes the results of simulation research with use of IT tools showing the impact of selected innovations on the improvement of network operation conditions. Directions of modernization of heating systems in the aspect of increasing energy efficiency and security of heat supply have also been indicted here.


Sign in / Sign up

Export Citation Format

Share Document