A New Iterative Identification and Control Method of Closed-Loop Power System Based on Ambient Signals

2015 ◽  
Vol 798 ◽  
pp. 261-265
Author(s):  
Miao Yu ◽  
Chao Lu

Identification and control are important problems of power system based on ambient signals. In order to avoid the model error influence of the controller design, a new iterative identification and control method is proposed in this paper. This method can solve model set and controller design of closed-loop power system. First, an uncertain model of power system is established. Then, according to the stability margin of power system, stability theorem is put forward. And then controller design method and the whole algorithm procedure are given. Simulation results show the effective performance of the proposed method based on the four-machine-two-region system.

2021 ◽  
Vol 2121 (1) ◽  
pp. 012004
Author(s):  
Weijie Du ◽  
Miao Yu ◽  
Jinglin Li ◽  
Shouzhi Zhang ◽  
Jingxuan Hu

Abstract Identification and control are important problems of closed-loop power system. At present, most studies are separate identification methods. This paper studies an online and real-time integrated identification method, which can solve the problems of model set and controller design of closed-loop power system. This paper investigates a new iterative identification algorithm and its convergence problem of closed-loop power system based on ambient signals. Firstly, the whole algorithm procedure is given. This algorithm uses the iterative process under the closed-loop condition, which combines system model identification with controller design. Then the complementary of model identification and control design has been realized. Secondly, because of the dynamic performance of the iterative identification algorithm, it has characteristics described from the perspective of a partitioned dynamic system. Regard each iterative identification step as a state node. In this situation, the algorithm guarantees all the state nodes converge to the Lyapunov stable equilibrium. Finally, the simulation results show the correctness and effectiveness of the proposed method through the simulation of a power system with four-machine-two-region.


Author(s):  
Vu Thu Diep ◽  
◽  
Phan Duy Hung

Control systems act as the nervous system for an industrial plant as they provide sensing, analysis, and control of various physical processes. Tuning them is the art of selecting values so that the controllers will be able to eliminate an error quickly and precisely to ensure the process variables stay within a pre-determined stability margin. That can be a painstaking process as it depends on the architecture of the control system and the controller design method. This paper describes a cascade-controller design based on soft oscillation index, with details for tuning them on the basis of stability margin. Using the same stability margin, this work provides analytical comparisons of performance indices in comparison with other well-known tuning methods.


2013 ◽  
Vol 421 ◽  
pp. 16-22
Author(s):  
Shan Shan Wu ◽  
Wei Huo

A new stabilization control method for underactuated linear mechanical systems is presented in this paper. By proper setting the desired closed-loop system, the matching condition for controller design is reduced to one equation and an adjustable parameter (damping coefficient) is introduced to the controller. Stability of the closed-loop system is proved based on passivity. As an application example, stabilization control of 2-DOF Pendubot is studied. The system is linearized at its equilibrium point and the proposed controller design method is applied to the linearized system. The procedure of solving matching condition and design controller for the Pendubot is provided. The simulation results verify feasibility of the proposed method.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Alireza Alizadegan ◽  
Pan Zhao ◽  
Ryozo Nagamune ◽  
Mu Chiao

Abstract This paper validates a robust H∞ controller design method, experimentally, on miniaturized prototypes of the magnetically actuated lens-tilting optical image stabilizers (OISs) with product variabilities. Five small-scale OIS prototypes with product variations are constructed by three-dimensional (3D) printing. For the prototypes, the model parameters are identified based on experimental frequency response data of the prototypes. Using the identified model, a robust H∞ controller is designed to guarantee the robust stability of the closed-loop system and to optimize the closed-loop performance. The experimental results reveal larger and more complex uncertainties in miniaturized OISs with mass-produced parts compared to large-scale prototypes. Despite the increased amount of uncertainties, it is demonstrated that the robust H∞ controller still outperforms the conventional controllers in terms of robust closed-loop stability, performance, and controller order for practical implementation on a mobile phone device.


Author(s):  
Tsunehiro Wakasugi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper deals with a new system design method for motion and vibration control of a three-dimensional flexible shaking table. An integrated modeling and controller design procedure for flexible shaking table system is presented. An experimental three-dimensional shaking table is built. “Reduced-Order Physical Model” procedure is adopted. A state equation system model is composed and a feedback controller is designed by applying LQI control law to achieve simultaneous motion and vibration control. Adding a feedforward, two-degree-of-freedom control system is designed. Computer simulations and control experiments are carried out and the effectiveness of the presented procedure is investigated. The robustness of the system is also investigated.


Sign in / Sign up

Export Citation Format

Share Document